A330761 Array read by antidiagonals: T(n,k) is the number of faces on a ring formed by connecting the ends of a prismatic rod whose cross-section is an n-sided regular polygon after applying a twist of k/n turns.
2, 3, 1, 4, 1, 2, 5, 1, 1, 1, 6, 1, 2, 3, 2, 7, 1, 1, 1, 1, 1, 8, 1, 2, 1, 4, 1, 2, 9, 1, 1, 3, 1, 1, 3, 1, 10, 1, 2, 1, 2, 5, 2, 1, 2, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 14, 1, 2, 1, 2, 1, 2, 7, 2, 1, 2, 1, 2
Offset: 1
Examples
A prismatic rod having a cross-section that is an octagon will have: 8 faces if no twist is applied or if the amount of twisting is a multiple of 8: 0/8, 8/8, 16/8, etc.; 4 faces if the amount of twisting is 4/8, 12/8, etc. 2 faces if the amount of twisting is 2/8, 6/8, 10/8, etc. 1 face if the amount of twisting is 1/8, 3/8, 5/8, 7/8, 9/8, etc. Note that the number of faces is equal to gcd(n,k) where n=number of sides of the prismatic rod and k=amount of twist applied to the rod. T(n,k) as a table begins: (n=number of sides of polygon; k=amount of fractional twist applied) n |k=0 1 2 3 4 5 6 7 8 9 10 11 12 13 ... ---+------------------------------------------- 2 | 2 1 2 1 2 1 2 1 2 1 2 1 2 1... 3 | 3 1 1 3 1 1 3 1 1 3 1 1 3 1... 4 | 4 1 2 1 4 1 2 1 4 1 2 1 4 1... 5 | 5 1 1 1 1 5 1 1 1 1 5 1 1 1... 6 | 6 1 2 3 2 1 6 1 2 3 2 1 6 1... 7 | 7 1 1 1 1 1 1 7 1 1 1 1 1 1... 8 | 8 1 2 1 4 1 2 1 8 1 2 1 4 1... 9 | 9 1 1 3 1 1 3 1 1 9 1 1 3 1... 10 | 10 1 2 1 2 5 2 1 2 1 10 1 2 1... 11 | 11 1 1 1 1 1 1 1 1 1 1 11 1 1... 12 | 12 1 2 3 4 1 6 1 4 3 2 1 12 1... 13 | 13 1 1 1 1 1 1 1 1 1 1 1 1 13... ...
Links
- Martin Gardner, Mathematical Games, A Möbius band has a finite thickness, and so it is actually a twisted prism, Scientific American, August, 1978, 18-25.
Crossrefs
Subtable of A109004.
Formula
T(n, k) = gcd(n, k).
Comments