This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330762 #11 Jan 09 2020 19:40:21 %S A330762 1,2,2,4,12,8,11,67,114,58,30,376,1230,1496,612,96,2174,12038,26156, %T A330762 24570,8374,308,12792,113028,389968,630300,481284,140408,1052,76972, %U A330762 1043355,5363331,13259870,17008218,10930150,2785906,3648,471260,9574934,70524256,250201560,479284952,508811114,282141552,63830764 %N A330762 Triangle read by rows: T(n,k) is the number of series-reduced rooted trees whose leaves are multisets of colors with a total of n elements using exactly k colors. %H A330762 Andrew Howroyd, <a href="/A330762/b330762.txt">Table of n, a(n) for n = 1..1275</a> (first 50 rows) %e A330762 Triangle begins: %e A330762 1; %e A330762 2, 2; %e A330762 4, 12, 8; %e A330762 11, 67, 114, 58; %e A330762 30, 376, 1230, 1496, 612; %e A330762 96, 2174, 12038, 26156, 24570, 8374; %e A330762 308, 12792, 113028, 389968, 630300, 481284, 140408; %e A330762 1052, 76972, 1043355, 5363331, 13259870, 17008218, 10930150, 2785906; %e A330762 ... %e A330762 The T(3,2) = 12 trees are: (122), (112), ((1)(22)), ((1)(12)), ((2)(12)), ((2)(11)), ((1)(2)(2)), ((1)(1)(2)), ((1)((2)(2))), ((1)((1)(2))), ((2)((1)(2))), ((2)((1)(1))). %o A330762 (PARI) %o A330762 EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} %o A330762 R(n, k)={my(v=[]); for(n=1, n, v=concat(v, EulerT(concat(v, [binomial(n+k-1, k-1)]))[n])); v} %o A330762 M(n)={my(v=vector(n, k, R(n, k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k, i)*v[i])))} %o A330762 { my(T=M(10)); for(n=1, #T~, print(T[n, 1..n])) } %Y A330762 Column 1 is A141268. %Y A330762 Main diagonal is A005804. %Y A330762 Row sums are A330469. %Y A330762 Cf. A330763 (leaves are sets). %K A330762 nonn,tabl %O A330762 1,2 %A A330762 _Andrew Howroyd_, Dec 29 2019