This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330763 #8 Jan 09 2020 19:43:53 %S A330763 1,1,2,2,8,8,5,41,90,58,12,204,852,1264,612,33,1046,7428,19568,21510, %T A330763 8374,90,5456,62682,262912,496270,431040,140408,261,29165,523167, %U A330763 3291021,9520220,13884960,9947294,2785906,766,158792,4358182,39636784,165204730,360421716,426677440,259854304,63830764 %N A330763 Triangle read by rows: T(n,k) is the number of series-reduced rooted trees whose leaves are sets of colors with a total of n elements using exactly k colors. %H A330763 Andrew Howroyd, <a href="/A330763/b330763.txt">Table of n, a(n) for n = 1..1275</a> (first 50 rows) %e A330763 Triangle begins: %e A330763 1; %e A330763 1, 2; %e A330763 2, 8, 8; %e A330763 5, 41, 90, 58; %e A330763 12, 204, 852, 1264, 612; %e A330763 33, 1046, 7428, 19568, 21510, 8374; %e A330763 90, 5456, 62682, 262912, 496270, 431040, 140408; %e A330763 261, 29165, 523167, 3291021, 9520220, 13884960, 9947294, 2785906; %e A330763 ... %e A330763 The T(3,2) = 8 trees are: ((1)(12)), ((2)(12)), ((1)(2)(2)), ((1)(1)(2)), ((1)((2)(2))), ((1)((1)(2))), ((2)((1)(2))), ((2)((1)(1))). %o A330763 (PARI) %o A330763 EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} %o A330763 R(n, k)={my(v=[]); for(n=1, n, v=concat(v, EulerT(concat(v, [binomial(k,n)]))[n])); v} %o A330763 M(n)={my(v=vector(n, k, R(n, k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k, i)*v[i])))} %o A330763 {my(T=M(10)); for(n=1, #T~, print(T[n, 1..n]))} \\ _Andrew Howroyd_, Dec 29 2019 %Y A330763 Column 1 is A000669. %Y A330763 Main diagonal is A005804. %Y A330763 Row sums are A330764. %Y A330763 Cf. A330762 (leaves are multisets). %K A330763 nonn,tabl %O A330763 1,3 %A A330763 _Andrew Howroyd_, Dec 29 2019