This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330764 #9 Jan 09 2020 19:22:52 %S A330764 1,3,18,194,2944,57959,1398858,39981994,1320143478,49439258516, %T A330764 2070409961552,95867076538834,4863079990663528,268198764863998103, %U A330764 15977057268090388836,1022415045656417706598,69946606996018140613292,5094427098628436561252367,393558075509405403487404506 %N A330764 Number of series-reduced rooted trees whose leaves are sets with a total of n elements covering an initial interval of positive integers. %H A330764 Andrew Howroyd, <a href="/A330764/b330764.txt">Table of n, a(n) for n = 1..200</a> %e A330764 The a(3) = 18 trees: %e A330764 (123) ((1)(12)) ((1)(1)(1)) %e A330764 ((1)(23)) ((2)(12)) ((1)((1)(1))) %e A330764 ((2)(13)) ((1)(2)(2)) %e A330764 ((3)(12)) ((1)(1)(2)) %e A330764 ((1)(2)(3)) ((1)((2)(2))) %e A330764 ((1)((2)(3))) ((1)((1)(2))) %e A330764 ((2)((1)(3))) ((2)((1)(2))) %e A330764 ((3)((1)(2))) ((2)((1)(1))) %o A330764 (PARI) %o A330764 EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} %o A330764 R(n, k)={my(v=[]); for(n=1, n, v=concat(v, EulerT(concat(v, [binomial(k, n)]))[n])); v} %o A330764 seq(n)={sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)))} %Y A330764 Row sums of A330763. %Y A330764 Cf. A330469 (leaves are multisets). %K A330764 nonn %O A330764 1,2 %A A330764 _Andrew Howroyd_, Dec 29 2019