This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330780 #19 Jan 06 2020 09:15:00 %S A330780 1,2,2,2,2,3,3,3,3,3,3,3,4,3,3,4,4,4,4,4,4,4,5,4,4,4,4,4,4,5,4,4,5,5, %T A330780 5,5,5,5,5,6,5,5,5,5,6,5,5,5,5,5,5,6,5,5,5,5,5,6,5,6,6,6,6,6,6,6,7,6, %U A330780 6,6,6,6,8,6,6,6,6,6,6,8,6,6,6,6,6,6,7 %N A330780 Lexicographically earliest sequence of positive integers such that for any v > 0, the value v appears up to v^2 times, and the associate function f defined by f(n) = Sum_{k = 1..n} a(k) * m(k) for n >= 0 is injective (where {m(k)} corresponds to knight's moves, see Comments for precise definition). %C A330780 The sequence {m(k)} is 8-periodic: %C A330780 m(1) = 2 + i, %C A330780 m(2) = 1 + 2*i, m(3) | m(2) %C A330780 m(3) = -1 + 2*i, * | * %C A330780 m(4) = -2 + i, m(4) * | * m(1) %C A330780 m(5) = -2 - i, ------+------ %C A330780 m(6) = -1 - 2*i, m(5) * | * m(8) %C A330780 m(7) = 1 - 2*i, * | * %C A330780 m(8) = 2 - i. m(6) | m(7) %H A330780 Rémy Sigrist, <a href="/A330780/b330780.txt">Table of n, a(n) for n = 1..10000</a> %H A330780 Rémy Sigrist, <a href="/A330780/a330780_1.png">Illustration of first steps</a> %H A330780 Rémy Sigrist, <a href="/A330780/a330780.png">Representation of f(n) for n = 0..1000000 in the complex plane</a> (where the color is function of n) %H A330780 Rémy Sigrist, <a href="/A330780/a330780_2.png">Colored representation of the variant where the value v can appear up to v^3 times</a> %H A330780 Rémy Sigrist, <a href="/A330780/a330780.gp.txt">PARI program for A330780</a> %e A330780 The first terms, alongside the correspond value of f(n), are: %e A330780 n a(n) f(n) %e A330780 -- ---- ------- %e A330780 0 N/A 0 %e A330780 1 1 2+i %e A330780 2 2 4+5*i %e A330780 3 2 2+9*i %e A330780 4 2 -2+11*i %e A330780 5 2 -6+9*i %e A330780 6 3 -9+3*i %e A330780 7 3 -6-3*i %e A330780 8 3 -6*i %e A330780 9 3 6-3*i %e A330780 10 3 9+3*i %e A330780 11 3 6+9*i %e A330780 12 3 12*i %e A330780 See also illustration in Links section. %o A330780 (PARI) See Links section. %Y A330780 See A331004 and A331005 for the real and imaginary parts of f, respectively. %Y A330780 See A330779 for another variant. %K A330780 nonn %O A330780 1,2 %A A330780 _Rémy Sigrist_, Dec 31 2019