cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330783 Number of set multipartitions (multisets of sets) of strongly normal multisets of size n, where a finite multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities.

This page as a plain text file.
%I A330783 #11 Dec 30 2020 14:58:46
%S A330783 1,1,3,8,27,94,385,1673,8079,41614,231447,1364697,8559575,56544465,
%T A330783 393485452,2867908008,21869757215,173848026202,1438593095272,
%U A330783 12360614782433,110119783919367,1015289796603359,9674959683612989,95147388659652754,964559157655032720,10067421615492769230
%N A330783 Number of set multipartitions (multisets of sets) of strongly normal multisets of size n, where a finite multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities.
%C A330783 The (weakly) normal version is A116540.
%H A330783 Andrew Howroyd, <a href="/A330783/b330783.txt">Table of n, a(n) for n = 0..50</a>
%e A330783 The a(1) = 1 through a(3) = 8 set multipartitions:
%e A330783   {{1}}  {{1,2}}    {{1,2,3}}
%e A330783          {{1},{1}}  {{1},{1,2}}
%e A330783          {{1},{2}}  {{1},{2,3}}
%e A330783                     {{2},{1,3}}
%e A330783                     {{3},{1,2}}
%e A330783                     {{1},{1},{1}}
%e A330783                     {{1},{1},{2}}
%e A330783                     {{1},{2},{3}}
%e A330783 The a(4) = 27 set multipartitions:
%e A330783   {{1},{1},{1},{1}}  {{1},{1},{1,2}}  {{1},{1,2,3}}  {{1,2,3,4}}
%e A330783   {{1},{1},{1},{2}}  {{1},{1},{2,3}}  {{1,2},{1,2}}
%e A330783   {{1},{1},{2},{2}}  {{1},{2},{1,2}}  {{1,2},{1,3}}
%e A330783   {{1},{1},{2},{3}}  {{1},{2},{1,3}}  {{1},{2,3,4}}
%e A330783   {{1},{2},{3},{4}}  {{1},{2},{3,4}}  {{1,2},{3,4}}
%e A330783                      {{1},{3},{1,2}}  {{1,3},{2,4}}
%e A330783                      {{1},{3},{2,4}}  {{1,4},{2,3}}
%e A330783                      {{1},{4},{2,3}}  {{2},{1,3,4}}
%e A330783                      {{2},{3},{1,4}}  {{3},{1,2,4}}
%e A330783                      {{2},{4},{1,3}}  {{4},{1,2,3}}
%e A330783                      {{3},{4},{1,2}}
%t A330783 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A330783 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t A330783 strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
%t A330783 Table[Length[Select[Join@@mps/@strnorm[n],And@@UnsameQ@@@#&]],{n,0,5}]
%o A330783 (PARI)
%o A330783 WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
%o A330783 D(p, n)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); my(u=WeighT(v)); Vec(1/prod(k=1, n, 1 - u[k]*x^k + O(x*x^n)))/prod(i=1, #v, i^v[i]*v[i]!)}
%o A330783 seq(n)={my(s=0); forpart(p=n, s+=D(p,n)); s} \\ _Andrew Howroyd_, Dec 30 2020
%Y A330783 Allowing edges to be multisets gives is A035310.
%Y A330783 The strict case is A318402.
%Y A330783 The constant case is A000005.
%Y A330783 The (weakly) normal version is A116540.
%Y A330783 Unlabeled set multipartitions are A049311.
%Y A330783 Set multipartitions of prime indices are A050320.
%Y A330783 Set multipartitions of integer partitions are A089259.
%Y A330783 Cf. A001055, A047968, A255906, A269134, A283877, A296119, A317775, A318360, A318362, A330625, A330628.
%K A330783 nonn
%O A330783 0,3
%A A330783 _Gus Wiseman_, Jan 02 2020
%E A330783 Terms a(10) and beyond from _Andrew Howroyd_, Dec 30 2020