This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330784 #4 Jan 04 2020 09:52:55 %S A330784 1,1,1,1,3,2,1,5,9,5,1,9,28,36,16,1,13,69,160,164,61,1,20,160,580, %T A330784 1022,855,272,1,28,337,1837,4996,7072,4988,1385 %N A330784 Triangle read by rows where T(n,k) is the number of balanced reduced multisystems of depth k with n equal atoms. %C A330784 A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem. %F A330784 T(n,3) = A000041(n) - 2. %F A330784 T(n,4) = A001970(n) - 3 * A000041(n) + 3. %e A330784 Triangle begins: %e A330784 1 %e A330784 1 1 %e A330784 1 3 2 %e A330784 1 5 9 5 %e A330784 1 9 28 36 16 %e A330784 1 13 69 160 164 61 %e A330784 1 20 160 580 1022 855 272 %e A330784 1 28 337 1837 4996 7072 4988 1385 %e A330784 Row n = 5 counts the following multisystems (strings of 1's are replaced by their lengths): %e A330784 5 {1,4} {{1},{1,3}} {{{1}},{{1},{1,2}}} %e A330784 {2,3} {{1},{2,2}} {{{1,1}},{{1},{2}}} %e A330784 {1,1,3} {{2},{1,2}} {{{1}},{{2},{1,1}}} %e A330784 {1,2,2} {{3},{1,1}} {{{1,2}},{{1},{1}}} %e A330784 {1,1,1,2} {{1},{1,1,2}} {{{2}},{{1},{1,1}}} %e A330784 {{1,1},{1,2}} %e A330784 {{2},{1,1,1}} %e A330784 {{1},{1},{1,2}} %e A330784 {{1},{2},{1,1}} %t A330784 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A330784 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A330784 totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1<Length[#]<Length[m]&]}],m]; %t A330784 Table[Length[Select[totm[ConstantArray[1,n]],Depth[#]==k&]],{n,2,6},{k,2,n}] %Y A330784 Row sums are A318813. %Y A330784 Column k = 3 is A007042. %Y A330784 Column k = 4 is A001970(n) - 3*A000041(n) + 3. %Y A330784 Column k = n is A000111. %Y A330784 Row n is row prime(n) of A330727. %Y A330784 Cf. A000669, A001055, A002846, A005121, A196545, A213427, A318812, A320160, A330474, A330475, A330655, A330667, A330679. %K A330784 nonn,more,tabl %O A330784 2,5 %A A330784 _Gus Wiseman_, Jan 03 2020