cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330784 Triangle read by rows where T(n,k) is the number of balanced reduced multisystems of depth k with n equal atoms.

This page as a plain text file.
%I A330784 #4 Jan 04 2020 09:52:55
%S A330784 1,1,1,1,3,2,1,5,9,5,1,9,28,36,16,1,13,69,160,164,61,1,20,160,580,
%T A330784 1022,855,272,1,28,337,1837,4996,7072,4988,1385
%N A330784 Triangle read by rows where T(n,k) is the number of balanced reduced multisystems of depth k with n equal atoms.
%C A330784 A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
%F A330784 T(n,3) = A000041(n) - 2.
%F A330784 T(n,4) = A001970(n) - 3 * A000041(n) + 3.
%e A330784 Triangle begins:
%e A330784     1
%e A330784     1    1
%e A330784     1    3    2
%e A330784     1    5    9    5
%e A330784     1    9   28   36   16
%e A330784     1   13   69  160  164   61
%e A330784     1   20  160  580 1022  855  272
%e A330784     1   28  337 1837 4996 7072 4988 1385
%e A330784 Row n = 5 counts the following multisystems (strings of 1's are replaced by their lengths):
%e A330784   5  {1,4}      {{1},{1,3}}      {{{1}},{{1},{1,2}}}
%e A330784      {2,3}      {{1},{2,2}}      {{{1,1}},{{1},{2}}}
%e A330784      {1,1,3}    {{2},{1,2}}      {{{1}},{{2},{1,1}}}
%e A330784      {1,2,2}    {{3},{1,1}}      {{{1,2}},{{1},{1}}}
%e A330784      {1,1,1,2}  {{1},{1,1,2}}    {{{2}},{{1},{1,1}}}
%e A330784                 {{1,1},{1,2}}
%e A330784                 {{2},{1,1,1}}
%e A330784                 {{1},{1},{1,2}}
%e A330784                 {{1},{2},{1,1}}
%t A330784 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A330784 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t A330784 totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1<Length[#]<Length[m]&]}],m];
%t A330784 Table[Length[Select[totm[ConstantArray[1,n]],Depth[#]==k&]],{n,2,6},{k,2,n}]
%Y A330784 Row sums are A318813.
%Y A330784 Column k = 3 is A007042.
%Y A330784 Column k = 4 is A001970(n) - 3*A000041(n) + 3.
%Y A330784 Column k = n is A000111.
%Y A330784 Row n is row prime(n) of A330727.
%Y A330784 Cf. A000669, A001055, A002846, A005121, A196545, A213427, A318812, A320160, A330474, A330475, A330655, A330667, A330679.
%K A330784 nonn,more,tabl
%O A330784 2,5
%A A330784 _Gus Wiseman_, Jan 03 2020