A330785 Triangle read by rows where T(n,k) is the number of chains of length k from minimum to maximum in the poset of integer partitions of n ordered by refinement.
1, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 5, 8, 4, 0, 1, 9, 25, 28, 11, 0, 1, 13, 57, 111, 99, 33, 0, 1, 20, 129, 379, 561, 408, 116, 0, 1, 28, 253, 1057, 2332, 2805, 1739, 435, 0, 1, 40, 496, 2833, 8695, 15271, 15373, 8253, 1832, 0, 1, 54, 898, 6824, 28071, 67790, 98946, 85870, 40789, 8167
Offset: 1
Examples
Triangle begins: 1 0 1 0 1 1 0 1 3 2 0 1 5 8 4 0 1 9 25 28 11 0 1 13 57 111 99 33 0 1 20 129 379 561 408 116 Row n = 5 counts the following chains (minimum and maximum not shown): () (14) (113)->(14) (1112)->(113)->(14) (23) (113)->(23) (1112)->(113)->(23) (113) (122)->(14) (1112)->(122)->(14) (122) (122)->(23) (1112)->(122)->(23) (1112) (1112)->(14) (1112)->(23) (1112)->(113) (1112)->(122)
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; upr[q_]:=Union[Sort/@Apply[Plus,mps[q],{2}]]; paths[eds_,start_,end_]:=If[start==end,Prepend[#,{}],#]&[Join@@Table[Prepend[#,e]&/@paths[eds,Last[e],end],{e,Select[eds,First[#]==start&]}]]; Table[Length[Select[paths[Join@@Table[{y,#}&/@DeleteCases[upr[y],y],{y,Sort/@IntegerPartitions[n]}],ConstantArray[1,n],{n}],Length[#]==k-1&]],{n,8},{k,n}]
Formula
T(n,k) = A330935(2^n,k).