This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330787 #12 Dec 17 2020 14:47:10 %S A330787 1,2,1,4,8,1,8,32,18,1,16,124,140,32,1,32,444,888,432,50,1,64,1568, %T A330787 5016,4196,1060,72,1,128,5440,26796,34732,15064,2224,98,1,256,18768, %U A330787 138292,262200,174240,44348,4172,128,1,512,64432,698864,1870840,1781884,692668,112424,7200,162,1 %N A330787 Triangle read by rows: T(n,k) is the number of strict multiset partitions of normal multisets of size n into k blocks, where a multiset is normal if it spans an initial interval of positive integers. %H A330787 Andrew Howroyd, <a href="/A330787/b330787.txt">Table of n, a(n) for n = 1..1275</a> (first 50 rows) %e A330787 Triangle begins: %e A330787 1; %e A330787 2, 1; %e A330787 4, 8, 1; %e A330787 8, 32, 18, 1; %e A330787 16, 124, 140, 32, 1; %e A330787 32, 444, 888, 432, 50, 1; %e A330787 64, 1568, 5016, 4196, 1060, 72, 1; %e A330787 128, 5440, 26796, 34732, 15064, 2224, 98, 1; %e A330787 ... %e A330787 The T(3,1) = 4 multiset partitions are {{1,1,1}}, {{1,1,2}}, {{1,2,2}}, {{1,2,3}}. %e A330787 The T(3,2) = 8 multiset partitions are {{1},{1,1}}, {{1},{2,2}}, {{2},{1,2}}, {{1},{1,2}}, {{2},{1,1}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}. %e A330787 The T(3,3) = 1 multiset partition is {{1},{2},{3}}. %t A330787 B[n_, k_] := Sum[Binomial[r, k] (-1)^(r-k), {r, k, n}]; %t A330787 row[n_] := Sum[B[n, j] SeriesCoefficient[ Product[(1 + x^k y)^Binomial[k + j - 1, j - 1], {k, 1, n}], {x, 0, n}], {j, 1, n}]/y + O[y]^n // CoefficientList[#, y]&; %t A330787 Array[row, 10] // Flatten (* _Jean-François Alcover_, Dec 17 2020, after _Andrew Howroyd_ *) %o A330787 (PARI) \\ here B(n, k) is A239473(n, k) %o A330787 B(n,k)={sum(r=k, n, binomial(r, k)*(-1)^(r-k))} %o A330787 Row(n)={Vecrev(sum(j=1, n, B(n,j)*polcoef(prod(k=1, n, (1 + x^k*y + O(x*x^n))^binomial(k+j-1,j-1)), n))/y)} %o A330787 { for(n=1, 10, print(Row(n))) } %Y A330787 Row sums are A317776. %Y A330787 Column 1 is A000079(n-1). %Y A330787 Main diagonal is A000012. %Y A330787 Cf. A317532, A327116. %K A330787 nonn,tabl %O A330787 1,2 %A A330787 _Andrew Howroyd_, Dec 31 2019