This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330794 #18 Sep 28 2023 04:08:16 %S A330794 1,-1,1,1,-2,1,-1,1,-3,1,1,4,2,-4,1,-1,-7,10,4,-5,1,1,-14,-25,16,7,-6, %T A330794 1,-1,65,-21,-55,21,11,-7,1,1,-24,196,-8,-98,24,16,-8,1,-1,-367,-204, %U A330794 400,42,-154,24,22,-9,1,1,774,-963,-688,666,148,-222,20,29,-10,1 %N A330794 Inverse of the Jacobsthal triangle (A322942). Triangle read by rows, T(n, k) for 0 <= k <= n. %C A330794 The inverse matrix of the Riordan square (cf. A321620) generated by (1 - 2*x^2)/((1 + x)*(1 - 2*x)). %H A330794 G. C. Greubel, <a href="/A330794/b330794.txt">Rows n = 0..50 of the triangle, flattened</a> %H A330794 G. C. Greubel, <a href="/A330794/a330794.txt">SageMath code</a> %F A330794 From _G. C. Greubel_, Sep 15 2023: (Start) %F A330794 T(n, 0) = (-1)^n. %F A330794 T(n, n) = 1. %F A330794 T(n, n-1) = -n. %F A330794 T(n, n-2) = A152947(n-1). (End) %e A330794 Triangle starts: %e A330794 [0] 1; %e A330794 [1] -1, 1; %e A330794 [2] 1, -2, 1; %e A330794 [3] -1, 1, -3, 1; %e A330794 [4] 1, 4, 2, -4, 1; %e A330794 [5] -1, -7, 10, 4, -5, 1; %e A330794 [6] 1, -14, -25, 16, 7, -6, 1; %e A330794 [7] -1, 65, -21, -55, 21, 11, -7, 1; %e A330794 [8] 1, -24, 196, -8, -98, 24, 16, -8, 1; %e A330794 [9] -1, -367, -204, 400, 42, -154, 24, 22, -9, 1; %t A330794 m=30; %t A330794 A322942:= CoefficientList[CoefficientList[Series[(1-2*t^2)/(1-(x+1)*t-2*t^2), {x,0,m}, {t,0,m}], t], x]; %t A330794 M:= M= Table[If[k<=n, A322942[[n+1,k+1]], 0], {n,0,m}, {k,0,m}]; %t A330794 g:= g= Inverse[M]; %t A330794 A330794[n_, k_]:= g[[n+1,k+1]]; %t A330794 Table[A330794[n,k], {n,0,15}, {k,0,n}]//Flatten (* _G. C. Greubel_, Sep 20 2023 *) %o A330794 (Sage) # uses[riordan_array from A256893] %o A330794 Jacobsthal = (2*x^2 - 1)/((x + 1)*(2*x - 1)) %o A330794 riordan_array(Jacobsthal, Jacobsthal, 10).inverse() %Y A330794 Cf. A152947, A256893, A321620, A322942. %K A330794 sign,tabl %O A330794 0,5 %A A330794 _Peter Luschny_, Jan 03 2020