cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330794 Inverse of the Jacobsthal triangle (A322942). Triangle read by rows, T(n, k) for 0 <= k <= n.

This page as a plain text file.
%I A330794 #18 Sep 28 2023 04:08:16
%S A330794 1,-1,1,1,-2,1,-1,1,-3,1,1,4,2,-4,1,-1,-7,10,4,-5,1,1,-14,-25,16,7,-6,
%T A330794 1,-1,65,-21,-55,21,11,-7,1,1,-24,196,-8,-98,24,16,-8,1,-1,-367,-204,
%U A330794 400,42,-154,24,22,-9,1,1,774,-963,-688,666,148,-222,20,29,-10,1
%N A330794 Inverse of the Jacobsthal triangle (A322942). Triangle read by rows, T(n, k) for 0 <= k <= n.
%C A330794 The inverse matrix of the Riordan square (cf. A321620) generated by (1 - 2*x^2)/((1 + x)*(1 - 2*x)).
%H A330794 G. C. Greubel, <a href="/A330794/b330794.txt">Rows n = 0..50 of the triangle, flattened</a>
%H A330794 G. C. Greubel, <a href="/A330794/a330794.txt">SageMath code</a>
%F A330794 From _G. C. Greubel_, Sep 15 2023: (Start)
%F A330794 T(n, 0) = (-1)^n.
%F A330794 T(n, n) = 1.
%F A330794 T(n, n-1) = -n.
%F A330794 T(n, n-2) = A152947(n-1). (End)
%e A330794 Triangle starts:
%e A330794 [0]   1;
%e A330794 [1]  -1,    1;
%e A330794 [2]   1,   -2,    1;
%e A330794 [3]  -1,    1,   -3,    1;
%e A330794 [4]   1,    4,    2,   -4,    1;
%e A330794 [5]  -1,   -7,   10,    4,   -5,    1;
%e A330794 [6]   1,  -14,  -25,   16,    7,   -6,    1;
%e A330794 [7]  -1,   65,  -21,  -55,   21,   11,   -7,    1;
%e A330794 [8]   1,  -24,  196,   -8,  -98,   24,   16,   -8,    1;
%e A330794 [9]  -1, -367, -204,  400,   42, -154,   24,   22,   -9,    1;
%t A330794 m=30;
%t A330794 A322942:= CoefficientList[CoefficientList[Series[(1-2*t^2)/(1-(x+1)*t-2*t^2), {x,0,m}, {t,0,m}], t], x];
%t A330794 M:= M= Table[If[k<=n, A322942[[n+1,k+1]], 0], {n,0,m}, {k,0,m}];
%t A330794 g:= g= Inverse[M];
%t A330794 A330794[n_, k_]:= g[[n+1,k+1]];
%t A330794 Table[A330794[n,k], {n,0,15}, {k,0,n}]//Flatten (* _G. C. Greubel_, Sep 20 2023 *)
%o A330794 (Sage) # uses[riordan_array from A256893]
%o A330794 Jacobsthal = (2*x^2 - 1)/((x + 1)*(2*x - 1))
%o A330794 riordan_array(Jacobsthal, Jacobsthal, 10).inverse()
%Y A330794 Cf. A152947, A256893, A321620, A322942.
%K A330794 sign,tabl
%O A330794 0,5
%A A330794 _Peter Luschny_, Jan 03 2020