cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330795 Evaluation of the polynomials given by the Riordan square of the Fibonacci sequence with a(0) = 1 (A193737) at 1/2 and normalized with 2^n.

This page as a plain text file.
%I A330795 #14 Sep 15 2023 01:39:47
%S A330795 1,3,9,39,153,615,2457,9831,39321,157287,629145,2516583,10066329,
%T A330795 40265319,161061273,644245095,2576980377,10307921511,41231686041,
%U A330795 164926744167,659706976665,2638827906663,10555311626649,42221246506599,168884986026393,675539944105575
%N A330795 Evaluation of the polynomials given by the Riordan square of the Fibonacci sequence with a(0) = 1 (A193737) at 1/2 and normalized with 2^n.
%H A330795 G. C. Greubel, <a href="/A330795/b330795.txt">Table of n, a(n) for n = 0..1000</a>
%H A330795 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,4).
%F A330795 a(n) = 2^n*Sum_{k=0..n} A193737(n,k)/2^k.
%F A330795 a(n) = [x^n] (1 - 4*x^2)/(1 - x*(3 + 4*x)).
%F A330795 a(n) = n! [x^n] (3/5)*exp(-x)*(exp(5*x) - 1) + 1.
%F A330795 a(n) = 4*a(n-2) + 3*a(n-1).
%F A330795 a(n) = 3*A015521(n), n>0. - _R. J. Mathar_, Aug 19 2022
%p A330795 gf := (4*x^2 - 1)/(x*(4*x + 3) - 1): ser := series(gf, x, 32):
%p A330795 seq(coeff(ser, x, n), n=0.. 25);
%p A330795 # Alternative:
%p A330795 gf:= (3/5)*exp(-x)*(exp(5*x) - 1) + 1: ser := series(gf, x, 32):
%p A330795 seq(n!*coeff(ser, x, n), n=0.. 25);
%p A330795 # Or:
%p A330795 a := proc(n) option remember; if n < 3 then return [1, 3, 9][n + 1] fi;
%p A330795 4*a(n-2) + 3*a(n-1) end: seq(a(n), n=0..25);
%t A330795 LinearRecurrence[{3,4}, {1,3,9}, 31] (* _G. C. Greubel_, Sep 14 2023 *)
%o A330795 (Magma) [1] cat [3*(4^n -(-1)^n)/5: n in [1..30]]; // _G. C. Greubel_, Sep 14 2023
%o A330795 (SageMath) [3*(4^n -(-1)^n)//5 + int(n==0) for n in range(31)] # _G. C. Greubel_, Sep 14 2023
%Y A330795 Cf. A006131, A015521, A193737, A321620, A324969 (Fibonacci with a(0)=1).
%K A330795 nonn,easy
%O A330795 0,2
%A A330795 _Peter Luschny_, Jan 10 2020