cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330805 Number of squares and rectangles in the interior of the square with vertices (n,0), (0,n), (-n,0) and (0,-n) in a square (x,y)-grid.

This page as a plain text file.
%I A330805 #29 Sep 19 2020 18:06:59
%S A330805 0,9,51,166,410,855,1589,2716,4356,6645,9735,13794,19006,25571,33705,
%T A330805 43640,55624,69921,86811,106590,129570,156079,186461,221076,260300,
%U A330805 304525,354159,409626,471366,539835,615505,698864,790416,890681,1000195,1119510,1249194,1389831
%N A330805 Number of squares and rectangles in the interior of the square with vertices (n,0), (0,n), (-n,0) and (0,-n) in a square (x,y)-grid.
%C A330805 Collection: 2*n*(n+1)-ominoes.
%C A330805 Number of squares (all sizes): (8*n^3 + 24*n^2 + 22*n - 3*(-1)^n + 3)/12.
%C A330805 Number of rectangles (all sizes): (8*n^4 + 24*n^3 + 22*n^2 + 3*(-1)^n - 3)/12.
%H A330805 Teofil Bogdan and Mircea Dan Rus, <a href="https://arxiv.org/abs/2007.13472">Counting the lattice rectangles inside Aztec diamonds and square biscuits</a>, arXiv:2007.13472 [math.CO], 2020.
%H A330805 Luce ETIENNE, <a href="/A330805/a330805.pdf">Illustration of a(1), a(2) and a(3)</a>.
%H A330805 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F A330805 G.f.: x*(x + 3)^2/(1 - x)^5.
%F A330805 E.g.f.: (1/6)*exp(x)*x*(54 + 99*x + 40*x^2 + 4*x^3). - _Stefano Spezia_, Jan 01 2020
%F A330805 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
%F A330805 a(n) = n*(n + 1)*(4*n^2 + 12*n + 11)/6.
%F A330805 a(n) = 4*A000332(n+3) + A212523(n+1).
%F A330805 a(n) = 9*A000332(n+3) + 6*A000332(n+2) + A000332(n+1). - _Mircea Dan Rus_, Aug 26 2020
%F A330805 a(n) = 3*A004320(n) + A004320(n-1). - _Mircea Dan Rus_, Aug 26 2020
%e A330805 a(1) = 4*1+5 = 9; a(2) = 4*5+31 = 51; a(3) = 4*15 + 106 = 166; a(4) = 4*36 + 270 = 410.
%t A330805 LinearRecurrence[{5,-10,10,-5,1},{0,9,51,166,410},40] (* _Harvey P. Dale_, Jun 27 2020 *)
%Y A330805 Cf. A000332, A004320, A046092, A111746, A212523.
%K A330805 nonn,easy
%O A330805 0,2
%A A330805 _Luce ETIENNE_, Jan 01 2020