A330817 Numbers of the form 2^(2*p+1)*M_p^2, where M_p is a Mersenne prime, A000668, with Mersenne exponent p, A000043.
288, 6272, 1968128, 528515072, 9005000365703168, 590286803193810649088, 151115150991626099228672, 42535295825503226685013029169053827072, 56539106072908298497625662716064949049646203797489239767322203013731319808
Offset: 1
Keywords
Examples
Since p=2 and M_2=3, then a(1)=2^(2*2+1)*3^3=288, and 288 has spectral basis {15^2, 2^6}, consisting of powers.
Links
- Walter Kehowski, Table of n, a(n) for n = 1..12
Programs
-
Maple
A330817:=[]: for www to 1 do for i from 1 to 31 do #ithprime(31)=127 p:=ithprime(i); q:=2^p-1; if isprime(q) then x:=2^(2*p+1)*q^2; A330817:=[op(A330817),x]; fi; od; od; A330817;
-
Mathematica
2^(2 * (p = MersennePrimeExponent[Range[9]]) + 1) * (2^p - 1)^2 (* Amiram Eldar, Jan 03 2020 *)
Comments