A330819 Numbers of the form M_p^2(M^p+2)^2, where M_p is a Mersenne prime (A000668) and p is a Mersenne exponent (A000043). Also the first element of the spectral basis of A330817.
225, 3969, 1046529, 268402689, 4503599493152769, 295147905144993087489, 75557863725364567605249, 21267647932558653957237540927630737409, 28269553036454149273332760011886696242605918383730576346715242738439159809
Offset: 1
Keywords
Examples
If p=2, then M_2=3, and a(1) = 3^2(3+2)^2 = 15^2 = 225.
Links
- Walter Kehowski, Table of n, a(n) for n = 1..12
Programs
-
Maple
A330819:=[]: for www to 1 do for i from 1 to 31 do #ithprime(31)=127 p:=ithprime(i); q:=2^p-1; if isprime(q) then x:=2^(2*p+1)*q^2; A330819:=[op(A330819),x]; fi; od; od; A330819;
-
Mathematica
(m = 2^MersennePrimeExponent[Range[9]] - 1)^2 * (m + 2)^2 (* Amiram Eldar, Jan 03 2020 *)
Comments