A330831 a(n) = (F_n^2 - 1)^2, where F_n is a Fermat prime, A019434.
64, 576, 82944, 4362338304, 18447869990796263424
Offset: 1
Keywords
Examples
a(0) = (3^2 - 1)^2 = 64.
Programs
-
Maple
F := proc(n) return 2^(2^n)+1 end; a := proc(n) if isprime(F(n)) then return (F(n)^2-1)^2 fi; end; [seq(a(n),n=0..4)];
Formula
a(n) = (F(n)^2 - 1)^2, where F(n) = 2^(2^n)+1 is a Fermat prime.
Comments