A330837 a(n) = M(n)^2*(M(n)+1)^2, where M(n) = A000668(n) is the n-th Mersenne prime.
144, 3136, 984064, 264257536, 4502500182851584, 295143401596905324544, 75557575495813049614336, 21267647912751613342506514584526913536, 28269553036454149248812831358032474524823101898744619883661101506865659904
Offset: 1
Keywords
Examples
If p=3, then a(2) = (7*2^3)^2 = 56^2, and the spectral basis of A330836(1) = 4704 and A330838(1) = 9408 is {63^2, 56^2, 48^2}, consisting of powers.
Links
- G. Sobczyk, The Missing Spectral Basis in Algebra and Number Theory, The American Mathematical Monthly 108(4), April 2001.
- Wikipedia, Idempotent (ring theory)
- Wikipedia, Peirce decomposition
Programs
-
Maple
a := proc(n::posint) local p, m; p:=NumberTheory[IthMersenne](n); m:=2^p-1; return m^2*(m+1)^2; end:
-
Mathematica
f[p_] := 2^(2p)*(2^p - 1)^2; f /@ MersennePrimeExponent /@ Range[2, 9] (* Amiram Eldar, Jan 12 2020 *)
-
PARI
forprime(p=1,999,isprime(2^p-1)&&print1((2^p-1)^2<<(2*p)",")) \\ M. F. Hasler, Feb 07 2020
Comments