This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330839 #19 Feb 23 2020 15:22:25 %S A330839 18816,5904384,1585545216,27015001097109504,1770860409581431947264, %T A330839 453345452974878297686016,127605887476509680055039087507161481216, %U A330839 169617318218724895492876988148194847148938611392467719301966609041193959424 %N A330839 Numbers of the form 2^(2*p+1)*3*M_p^2, where p > 2 is a Mersenne exponent, A000043, and M_p is the corresponding Mersenne prime, A000668. %C A330839 Also numbers with power-spectral basis {M_p^2*(M_p+2)^2, 4*M_p^2*(M_p+1)^2, (M_p^2-1)^2}, where by power-spectral basis we mean a spectral basis that consists of primes and powers. The first element of the power-spectral basis is A330819(n+1), the second element is A330840(n+1), and the third element is A330820(n+1). %C A330839 Subsequence of Zumkeller numbers (A083207), since a(n) = 2^r * 3 * s, where s is relatively prime to 6. - _Ivan N. Ianakiev_, Feb 03 2020 %H A330839 G. Sobczyk, <a href="https://garretstar.com/secciones/publications/docs/monthly336-346.pdf">The Missing Spectral Basis in Algebra and Number Theory</a>, The American Mathematical Monthly 108(4), April 2001. %H A330839 Wikipedia, <a href="https://en.wikipedia.org/wiki/Idempotent_(ring_theory)">Idempotent (ring theory)</a> %H A330839 Wikipedia, <a href="https://en.wikipedia.org/wiki/Peirce_decomposition">Peirce decomposition</a> %F A330839 a(n) = A330818(n+1) * 3 * A133049(n+1). %e A330839 a(1) = 2^(2*3+1) * 3 * 7^2 = 18816, and 18816 has spectral basis {63^2, 112^2, 48^2}, consisting of powers. %p A330839 a := proc(n::posint) %p A330839 local p, m; %p A330839 p:=NumberTheory[IthMersenne](n+1); %p A330839 m:=2^p-1; %p A330839 return 2^(2*p+1)*3*m^2; %p A330839 end: %t A330839 f[p_] := 2^(2p + 1)*3*(2^p - 1)^2; f /@ MersennePrimeExponent /@ Range[2, 9] (* _Amiram Eldar_, Jan 22 2020 *) %Y A330839 Cf. A000043, A000668, A133049, A330818, A330819, A330820, A330840. %K A330839 nonn %O A330839 1,1 %A A330839 _Walter Kehowski_, Jan 21 2020