This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330840 #17 Feb 02 2020 09:26:18 %S A330840 576,12544,3936256,1057030144,18010000731406336, %T A330840 1180573606387621298176,302230301983252198457344, %U A330840 85070591651006453370026058338107654144,113078212145816596995251325432129898099292407594978479534644406027462639616 %N A330840 a(n) = 4*M(n)^2*(M(n)+1)^2, where M(n) is the n-th Mersenne prime, A000668. %C A330840 Also a(n+1) is the second element of the power-spectral basis of A330839(n), where by power-spectral we mean that the spectral basis consists of primes and powers. %H A330840 Garret Sobczyk, <a href="https://garretstar.com/secciones/publications/docs/monthly336-346.pdf">The Missing Spectral Basis in Algebra and Number Theory</a>, The American Mathematical Monthly, Vol. 108, No. 4 (April 2001), pp. 336-346. %H A330840 Wikipedia, <a href="https://en.wikipedia.org/wiki/Idempotent_(ring_theory)">Idempotent (ring theory)</a> %H A330840 Wikipedia, <a href="https://en.wikipedia.org/wiki/Peirce_decomposition">Peirce decomposition</a> %F A330840 a(n) = 4 * A133049(n) * A330824(n). %e A330840 a(2) = 4*7^2*2^(2*3) = 2^8*7^2 = 112^2, and the spectral basis of A330839(1) = 18816 is {63^2, 112^2, 48^2}, consisting only of powers. %p A330840 A330840 := proc(n::posint) %p A330840 local p, m; %p A330840 p:=NumberTheory[IthMersenne](n); %p A330840 m:=2^p-1; %p A330840 return 4*m^2*(m+1)^2; %p A330840 end: %t A330840 f[p_] := 2^(2*p + 2)*(2^p - 1)^2; f /@ MersennePrimeExponent /@ Range[9] (* _Amiram Eldar_, Jan 24 2020 *) %Y A330840 Cf. A000043, A000668, A133049, A330818, A330819, A330820, A330839. %K A330840 nonn %O A330840 1,1 %A A330840 _Walter Kehowski_, Jan 23 2020