cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330860 Denominator of the rational number A(n) that appears in the formula for the n-th cumulant k(n) = (-1)^n*2^n*(A(n) - (n - 1)!*zeta(n)) of the limiting distribution of the number of comparisons in quicksort, for n >= 2, with A(0) = 1 and A(1) = 0.

This page as a plain text file.
%I A330860 #46 Aug 17 2020 22:27:17
%S A330860 1,1,4,8,144,3456,172800,10368000,3810240000,177811200000,
%T A330860 9957427200000,75278149632000000,1912817782149120000000,
%U A330860 53023308921173606400000000,17742659631203112173568000000000,426249654980023566857797632000000000,9600207854287580784554747166720000000000
%N A330860 Denominator of the rational number A(n) that appears in the formula for the  n-th cumulant k(n) = (-1)^n*2^n*(A(n) - (n - 1)!*zeta(n)) of the limiting distribution of the number of comparisons in quicksort, for n >= 2, with A(0) = 1 and A(1) = 0.
%C A330860 Hennequin conjectured his cumulant formula in his 1989 paper and proved it in his 1991 thesis.
%C A330860 First he calculates the numbers (B(n): n >= 0), with B(0) = 1 and B(0) = 0, given for p >= 0 by the recurrence
%C A330860 Sum_{r=0..p} Stirling1(p+2, r+1)*B(p-r)/(p-r)! + Sum_{r=0..p} F(r)*F(p-r) = 0, where F(r) = Sum_{i=0..r} Stirling1(r+1,i+1)*G(r-i) and G(k) = Sum_{a=0..k} (-1)^a*B(k-a)/(a!*(k-a)!*2^a).
%C A330860 Then A(n) = L_n(B(1),...,B(n)), where L_n(x_1,...,x_n) are the logarithmic polynomials of Bell.
%C A330860 Hoffman and Kuba (2019, 2020) gave an alternative proof of Hennequin's cumulant formula and gave an alternative calculation for the constants (-2)^n*A(n), which they denote by a_n. See also Finch (2020).
%C A330860 The Maple program given in A330852 is based on Tan and Hadjicostas (1993), where the numbers (A(n): n >= 0) are also tabulated.
%C A330860 For a list of references about the theory of the limiting distribution of the number of comparisons in quicksort, which we do not discuss here, see the ones for sequence A330852.
%D A330860 Pascal Hennequin, Analyse en moyenne d'algorithmes, tri rapide et arbres de recherche, Ph.D. Thesis, L'École Polytechnique Palaiseau (1991), p. 83.
%H A330860 Petros Hadjicostas, <a href="/A330860/b330860.txt">Table of n, a(n) for n = 0..30</a>
%H A330860 S. B. Ekhad and D. Zeilberger, <a href="https://arxiv.org/abs/1903.03708">A detailed analysis of quicksort running time</a>, arXiv:1903.03708 [math.PR], 2019. [They have the first eight moments for the number of comparisons in quicksort from which Hennequin's first eight asymptotic cumulants can be derived.]
%H A330860 Steven Finch, <a href="https://arxiv.org/abs/2002.02809">Recursive PGFs for BSTs and DSTs</a>, arXiv:2002.02809 [cs.DS], 2020; see Section 1.4. [He gives the constants a_s = (-2)^s*A(s) for s >= 2.]
%H A330860 P. Hennequin, <a href="http://www.numdam.org/article/ITA_1989__23_3_317_0.pdf">Combinatorial analysis of the quicksort algorithm</a>, Informatique théoretique et applications, 23(3) (1989), 317-333.
%H A330860 M. E. Hoffman and M. Kuba, <a href="https://arxiv.org/abs/1906.08347">Logarithmic integrals, zeta values, and tiered binomial coefficients</a>, arXiv:1906.08347 [math.CO], 2019-2020; see Section 5.2. [They study the constants a_s = (-2)^s*A(s) for s >= 2.]
%H A330860 Kok Hooi Tan and Petros Hadjicostas, <a href="/A330852/a330852.pdf">Density and generating functions of a limiting distribution in quicksort</a>, Technical Report #568, Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA, 1993; see p. 10.
%e A330860 The first few fractions A(n) are
%e A330860 1, 0, 7/4, 19/8, 937/144, 85981/3456, 21096517/172800, 7527245453/10368000, 19281922400989/3810240000, 7183745930973701/177811200000, ...
%e A330860 The first few fractions (-2)^n*A(n) (= a_n in Hoffman and Kuba and in Finch) are
%e A330860 1, 0, 7, -19, 937/9, -85981/108, 21096517/2700, -7527245453/81000, 19281922400989/14883750, -7183745930973701/347287500, ...
%p A330860 # The function A is defined in A330852.
%p A330860 # Produces the sequence of denominators of the A(n)'s.
%p A330860 seq(denom(A(n)), n = 0 .. 40);
%Y A330860 Cf. A063090, A067699, A093418, A096620, A115107, A288964, A288965, A288970, A288971, A330852 (numerators).
%K A330860 nonn,frac
%O A330860 0,3
%A A330860 _Petros Hadjicostas_, Apr 28 2020