cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A334883 Primitive practical numbers (A267124) with a record gap to the next primitive practical number.

Original entry on oeis.org

1, 2, 6, 42, 104, 140, 1036, 1590, 2730, 7900, 10374, 19180, 22660, 23180, 26418, 105868, 114960, 139060, 295780, 403524, 482250, 1294144, 2468944, 4799058, 5379282, 19035500, 20233936, 21803860, 112406992, 789190976, 3520928922
Offset: 1

Views

Author

Amiram Eldar, May 14 2020

Keywords

Comments

The record gap values are 1, 4, 14, 24, 36, 64, 74, 82, 84, 104, 106, 112, 120, 132, 154, 188, 204, 224, 236, 246, 258, 308, 326, 360, 418, 440, 452, 508, 674, 804, 846, ...

Examples

			The first 8 primitive practical numbers are 1, 2, 6, 20, 28, 30, 42 and 66. The differences between these terms are 1, 4, 14, 8, 2, 12 and 24. The record gaps are 1, 4, 14 and 24, which occur after the terms 1, 2, 6 and 42.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1); pracQ[fct_] := (ind = Position[fct[[;; , 1]]/(1 + FoldList[Times, 1, f @@@ Most@fct]), ?(# > 1 &)]) == {}; pracTestQ[fct, k_] := Module[{f = fct}, f[[k, 2]] -= 1; pracQ[f]]; primPracQ[n_] := Module[{fct = FactorInteger[n]}, pracQ[fct] && AllTrue[Range@Length[fct], fct[[#, 2]] == 1 || ! pracTestQ[fct, #] &]]; seq = {1}; m = 2; dm = 1; Do[If[primPracQ[n], d = n - m; If[d > dm, dm = d; AppendTo[seq, m]]; m = n], {n, 4, 10^5, 2}]; seq

A364706 a(n) is the least number k such that the k-th difference between consecutive practical numbers, A179651(k), equals 2*n, or -1 if no such k exists.

Original entry on oeis.org

2, 5, 16, 33, 85, 46, 331, 188, 171, 300, 1986, 962, 3321, 968, 2316, 6514, 9974, 3219, 12162, 3831, 4588, 20585, 30099, 22005, 30465, 33485, 28874, 35901, 136396, 48483, 120127, 34145, 140589, 233364, 126080, 185421, 607164, 279989, 359002, 327768, 609867, 354143
Offset: 1

Views

Author

Amiram Eldar, Aug 04 2023

Keywords

Comments

All the practical number except for 1 are even. Therefore all the differences between consecutive practical numbers are either 1 or even.

Examples

			a(1) = 2 since A179651(2) = 2 = 2*1.
a(2) = 5 since A179651(5) = 4 = 2*2.
a(3) = 16 since A179651(16) = 6 = 2*3.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1); pracQ[n_] := (ind = Position[(fct = FactorInteger[n])[[;; , 1]]/(1 + FoldList[Times, 1, f @@@ Most @ fct]), _?(# > 1 &)]) == {};
    seq[len_, nmax_] := Module[{s = Table[0, {len}], n = 2, prev = 2, k = 2, c = 0, i}, While[c < len && n <= nmax, n+=2; If[pracQ[n], i = (n - prev)/2; If[i <= len && s[[i]] == 0, c++; s[[i]] = k]; prev= n; k++]]; s]; seq[20, 10^6]

Formula

A179651(a(n)) = 2*n.
A005153(a(n)) = A364707(n).

A364707 a(n) is the least practical number A005153(k) such that A005153(k+1) - A005153(k) = 2*n, or -1 if no such number exists.

Original entry on oeis.org

2, 8, 42, 112, 368, 180, 1806, 936, 840, 1600, 14168, 6216, 25120, 6272, 16770, 52668, 83720, 24240, 103840, 29440, 35910, 184140, 278334, 197912, 282150, 313040, 266112, 337840, 1438722, 468540, 1254016, 319808, 1486584, 2566432, 1321376, 2003688, 7163646, 3121328
Offset: 1

Views

Author

Amiram Eldar, Aug 04 2023

Keywords

Examples

			a(1) = 2 since A005153(2) = 2 and A005153(3) = 4 = 2 + 2*1.
a(2) = 8 since A005153(5) = 8 and A005153(6) = 12 = 8 + 2*2.
a(3) = 42 since A005153(16) = 42 and A005153(17) = 48 = 42 + 2*3.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1); pracQ[n_] := (ind = Position[(fct = FactorInteger[n])[[;; , 1]]/(1 + FoldList[Times, 1, f @@@ Most @ fct]), _?(# > 1 &)]) == {};
    seq[len_, nmax_] := Module[{s = Table[0, {len}], n = 2, prev = 2, c = 0, i}, While[c < len && n <= nmax, n+=2; If[pracQ[n], i = (n - prev)/2; If[i <= len && s[[i]] == 0, c++; s[[i]] = prev]; prev= n]]; s]; seq[20, 10^6]

Formula

a(n) = A005153(A364706(n)).

A364975 Admirable numbers (A111592) with a record gap to the next admirable number.

Original entry on oeis.org

12, 30, 42, 88, 120, 140, 186, 534, 678, 6774, 7962, 77118, 94108, 152826, 478194, 662154, 935564, 1128174, 2028198, 6934398, 7750146, 8330924, 9984738, 10030804, 22956114, 62062566, 151040622, 284791602, 732988732, 804394974, 1151476732, 9040886574, 31302713634
Offset: 1

Views

Author

Amiram Eldar, Aug 15 2023

Keywords

Comments

The corresponding record gaps are 8, 10, 12, 14, 18, 34, 36, 48, 84, 132, 204, 216, 254, 312, 348, 360, 392, 468, 516, 528, 552, 598, 624, 638, 828, 852, 936, 1056, 1082, 1128, 1454, 1692, 1752, ... .

Examples

			The first 5 admirable numbers are 12, 20, 24, 30 and 40. The differences between these terms are 8, 4, 6 and 10. The record gaps, 8 and 10, occur after the terms 12 and 30, which are the first two terms of this sequence.
		

Crossrefs

Similar sequences: A306953, A330870, A334418, A334419, A334883, A363296.

Programs

  • Mathematica
    admQ[n_] := (ab = DivisorSigma[1, n] - 2 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2];
    seq[kmax_] := Module[{s = {}, m = 12, dm = 0}, Do[If[admQ[k], d = k - m; If[d > dm, dm = d; AppendTo[s, m]]; m = k], {k, m + 1, kmax}]; s]; seq[10^6]
  • PARI
    isadm(n) = {my(ab=sigma(n)-2*n); ab>0 && ab%2 == 0 && ab/2 < n && n%(ab/2) == 0; }
    lista(kmax) = {my(m = 12, dm = 0); for(k = m+1, kmax, if(isadm(k), d = k - m; if(d > dm, dm = d; print1(m, ", ")); m = k));}
Showing 1-4 of 4 results.