cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330892 Square array of polygonal numbers read by descending antidiagonals (the transpose of A317302).

This page as a plain text file.
%I A330892 #43 Dec 19 2024 11:27:31
%S A330892 0,1,0,0,1,0,-3,1,1,0,-8,0,2,1,0,-15,-2,3,3,1,0,-24,-5,4,6,4,1,0,-35,
%T A330892 -9,5,10,9,5,1,0,-48,-14,6,15,16,12,6,1,0,-63,-20,7,21,25,22,15,7,1,0,
%U A330892 -80,-27,8,28,36,35,28,18,8,1,0,-99,-35,9,36,49,51,45,34,21,9,1,0
%N A330892 Square array of polygonal numbers read by descending antidiagonals (the transpose of A317302).
%C A330892 \c  0 1  2  3  4   5   6   7   8   9  10  11   12   13    14  15  ...
%C A330892 r\
%C A330892 _0  0 1  0 -3 -8 -15 -24 -35 -48 -63 -80 -99 -120 -143 -168 -195  A067998
%C A330892 _1  0 1  1  0 -2  -5  -9 -14 -20 -27 -35 -44  -54  -65  -77  -90  A080956
%C A330892 _2  0 1  2  3  4   5   6   7   8   9  10  11   12   13   14   15  A001477
%C A330892 _3  0 1  3  6 10  15  21  28  36  45  55  66   78   91  105  120  A000217
%C A330892 _4  0 1  4  9 16  25  36  49  64  81 100 121  144  169  196  225  A000290
%C A330892 _5  0 1  5 12 22  35  51  70  92 117 145 176  210  247  287  330  A000326
%C A330892 _6  0 1  6 15 28  45  66  91 120 153 190 231  276  325  378  435  A000384
%C A330892 _7  0 1  7 18 34  55  81 112 148 189 235 286  342  403  469  540  A000566
%C A330892 _8  0 1  8 21 40  65  96 133 176 225 280 341  408  481  560  645  A000567
%C A330892 _9  0 1  9 24 46  75 111 154 204 261 325 396  474  559  651  750  A001106
%C A330892 10  0 1 10 27 52  85 126 175 232 297 370 451  540  637  742  855  A001107
%C A330892 11  0 1 11 30 58  95 141 196 260 333 415 506  606  715  833  960  A051682
%C A330892 12  0 1 12 33 64 105 156 217 288 369 460 561  672  793  924 1065  A051624
%C A330892 13  0 1 13 36 70 115 171 238 316 405 505 616  738  871 1015 1170  A051865
%C A330892 14  0 1 14 39 76 125 186 259 344 441 550 671  804  949 1106 1275  A051866
%C A330892 15  0 1 15 42 82 135 201 280 372 477 595 726  870 1027 1197 1380  A051867
%C A330892 ...
%C A330892 Each row has a second forward difference of (r-2) and each column has a forward difference of c(c-1)/2.
%H A330892 E. Deza and M. Deza, <a href="http://www.worldscientific.com/doi/suppl/10.1142/8188/suppl_file/8188_chap01.pdf">Figurate Numbers</a>, World Scientific, 2012; see p. 45.
%H A330892 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PolygonalNumber.html">Polygonal Number</a>.
%H A330892 Wikipedia, <a href="https://en.wikipedia.org/wiki/Polygonal_number">Polygonal number</a>.
%H A330892 <a href="/index/Pol#polygonal_numbers">Index to sequences related to polygonal numbers</a>
%F A330892 P(r, c) = (r - 2)(c(c-1)/2) + c.
%t A330892 Table[ PolygonalNumber[r - c, c], {r, 0, 11}, {c, r, 0, -1}] // Flatten
%Y A330892 Cf. A317302 (the same array) but read by ascending antidiagonals.
%Y A330892 Sub-arrays: A089000, A139600, A206735;
%Y A330892 Rows: A067998, A080956, A001477, A000217, A000290, A000326, A000384, A000566, A000567, A001106, A001107, A051682, A051624, A051865, A051866, A051867, A051868, A051869, A051870, A051871, A051872, A051873, A051874, A051875, A051876, A255184, A255185, A255186, A161935, A255187, A254474, ..., ;
%Y A330892 Columns (maybe missing some leading terms): A000004, A000012, A001477, A008585, A016957, A017329, A139606, A139607, A139608, A139609, A139610, A139611, A139612, A139613, A139614, A139615, A139616, A139617, A139618, A139619, A139620;
%Y A330892 Diagonals: A256857, A127736, A002411, A006003, A006000, A064808, A060354, A162607, A077414,
%Y A330892 Number of times k>1 appears: A129654, First occurrence of k: A063778.
%K A330892 easy,sign,tabl
%O A330892 1,7
%A A330892 _Robert G. Wilson v_, Apr 27 2020