This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330893 #38 Nov 16 2020 23:33:30 %S A330893 42,72,84,126,144,156,168,198,210,216,252,288,294,312,330,336,342,360, %T A330893 378,396,420,432,462,468,504,546,570,576,588,594,624,630,648,660,672, %U A330893 684,714,720,756,780,792,798,840,864,882,900,924,930,936,966,990,1008,1026 %N A330893 Numbers whose set of divisors contains a Pythagorean quadruple. %C A330893 A Pythagorean quadruple (x, y, z, m) is a set of positive integers that satisfy x^2 + y^2 + z^2 = m^2. %C A330893 The corresponding number of quadruples of the sequence is 1, 1, 2, 2, 2, 1, 3, 1, 3, 2, 4, 3, 2, 2, 1, 4, 1, 2, 3, 2, 7, 4, ... (see the sequence A330894). %C A330893 It is interesting to note that each set of divisors of a(n) contains m primitive Pythagorean quadruples for some n, m = 1, 2,... %C A330893 Examples: %C A330893 - The set of divisors of a(1)= 42 contains only one primitive Pythagorean quadruple: (2, 3, 6, 7). %C A330893 - The set of divisors of a(9) = 210 contains two primitive Pythagorean quadruples: (2, 3, 6, 7) and (2, 5, 14, 15). %C A330893 - The set of divisors of a(21) = 420 contains three primitive Pythagorean quadruples: (2, 3, 6, 7), (2, 5, 14, 15) and (4, 5, 20, 21). %C A330893 If k is in the sequence then so is m*k for m > 1. %C A330893 Assumes the elements (x,y,z,m) in a quadruple are distinct divisors, as otherwise 6 would be in the sequence with 1^2+2^2+2^2=3^2. - _Chai Wah Wu_, Nov 16 2020 %H A330893 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PythagoreanQuadruple.html">Pythagorean Quadruples</a>. %F A330893 a(n) == 0 (mod 6). %e A330893 168 is in the sequence because the set of divisors {1, 2, 3, 4, 6, 7, 8, 12, 14, 21, 24, 28, 42, 56, 84, 168} contains the Pythagorean quadruples {2, 3, 6, 7}, {4, 6, 12, 14} and {8, 12, 24, 28}. The first quadruple is primitive. %p A330893 with(numtheory): %p A330893 for n from 3 to 1200 do : %p A330893 d:=divisors(n):n0:=nops(d):it:=0: %p A330893 for i from 1 to n0-3 do: %p A330893 for j from i+1 to n0-2 do : %p A330893 for k from j+1 to n0-1 do: %p A330893 for m from k+1 to n0 do: %p A330893 if d[i]^2 + d[j]^2 + d[k]^2 = d[m]^2 %p A330893 then %p A330893 it:=it+1: %p A330893 else %p A330893 fi: %p A330893 od: %p A330893 od: %p A330893 od: %p A330893 od: %p A330893 if it>0 then %p A330893 printf(`%d, `,n): %p A330893 else fi: %p A330893 od: %t A330893 nq[n_] := If[ Mod[n,6]>0, 0, Block[{t, u, v, c = 0, d = Divisors[n], m}, m = Length@ d; Do[ t = d[[i]]^2 + d[[j]]^2; Do[u = t + d[[h]]^2; If[u > n^2, Break[]]; If[ Mod[n^2, u] == 0 && IntegerQ[v = Sqrt@ u] && Mod[n, v] == 0, c++], {h, j+1, m - 1}], {i, m-3}, {j, i+1, m - 2}]; c]]; Select[ Range@ 1026, nq[#] > 0 &] (* _Giovanni Resta_, May 04 2020 *) %o A330893 (PARI) isok(n) = {my(d=divisors(n), x); for (i=1, #d-3, for (j=i+1, #d-2, for (k=j+1, #d-1, if (issquare(d[i]^2 + d[j]^2 + d[k]^2, &x) && !(n % x), return(1)););););} \\ _Michel Marcus_, Nov 16 2020 %Y A330893 Cf. A027750, A169580, A330894, A331365. %K A330893 nonn %O A330893 1,1 %A A330893 _Michel Lagneau_, May 01 2020