cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330894 Numbers of Pythagorean quadruples contained in the divisors of A330893(n).

This page as a plain text file.
%I A330894 #13 Jun 06 2020 15:36:36
%S A330894 1,1,2,2,2,1,3,1,3,2,4,3,2,2,1,4,1,2,3,2,7,4,2,2,8,2,1,4,4,2,3,7,3,2,
%T A330894 5,2,2,4,6,2,5,2,11,6,4,1,4,1,6,2,4,12,2,5,1,4,6,4,2,5,6,4,1,2,3,4,17,
%U A330894 6,2,3,6,1,5,6,1,3,4,6,6,13,1,2,4,8,4,4
%N A330894 Numbers of Pythagorean quadruples contained in the divisors of A330893(n).
%e A330894 a(7) = 3 because A330893(7)=168, and the set of divisors of 168: {1, 2, 3, 4, 6, 7, 8, 12, 14, 21, 24, 28, 42, 56, 84, 168} contains three Pythagorean quadruples {2, 3, 6, 7}, {4, 6, 12, 14} and {8, 12, 24, 28}.
%p A330894 with(numtheory):
%p A330894 for n from 3 to 1700 do :
%p A330894    d:=divisors(n):n0:=nops(d):it:=0:
%p A330894     for i from 1 to n0-3 do:
%p A330894      for j from i+1 to n0-2 do :
%p A330894       for k from j+1 to n0-1 do:
%p A330894       for m from k+1 to n0 do:
%p A330894        if d[i]^2 + d[j]^2 + d[k]^2 = d[m]^2
%p A330894         then
%p A330894         it:=it+1:
%p A330894         else
%p A330894        fi:
%p A330894       od:
%p A330894      od:
%p A330894     od:
%p A330894     od:
%p A330894     if it>0 then
%p A330894     printf(`%d, `,it):
%p A330894     else fi:
%p A330894    od:
%t A330894 nq[n_] := If[Mod[n, 6] > 0, 0, Block[{t, u, v, c = 0, d = Divisors[n], m}, m = Length@ d; Do[t = d[[i]]^2 + d[[j]]^2; Do[u = t + d[[h]]^2; If[u > n^2, Break[]]; If[Mod[n^2, u] == 0 && IntegerQ[v = Sqrt@ u] && Mod[n, v] == 0, c++], {h, j+1, m-1}], {i, m-3}, {j, i+1, m - 2}]; c]]; Select[Array[nq, 1638], # > 0 &] (* _Giovanni Resta_, May 04 2020 *)
%Y A330894 Cf. A027750, A169580, A330893
%K A330894 nonn
%O A330894 1,3
%A A330894 _Michel Lagneau_, May 01 2020