cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330895 Numerator of the variance of the random number of comparisons in quicksort applied to lists of length n.

This page as a plain text file.
%I A330895 #23 May 09 2020 03:36:26
%S A330895 0,0,0,2,29,46,3049,60574,160599,182789,4913659,1072364,975570703,
%T A330895 1039388677,5491155875,92211937094,6954047816459,7225392149719,
%U A330895 2699717387790739,2785123121790325,573031978700759,84009502802237,45510401082365873,46518885869845328
%N A330895 Numerator of the variance of the random number of comparisons in quicksort applied to lists of length n.
%D A330895 D. E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching, Addison-Wesley, 1973; see answer to Ex. 8(a) of Section 6.2.2.
%H A330895 S. B. Ekhad and D. Zeilberger, <a href="https://arxiv.org/abs/1903.03708">A detailed analysis of quicksort running time</a>, arXiv:1903.03708 [math.PR], 2019; see Theorem 2.
%H A330895 V. Iliopoulos, <a href="https://arxiv.org/abs/1503.02504">The quicksort algorithm and related topics</a>, arXiv:1503.02504 [cs.DS], 2015.
%H A330895 V. Iliopoulos and D. Penman, <a href="https://arxiv.org/abs/1006.4063">Variance of the number of comparisons of randomized quicksort</a>, arXiv:1006.4063 [math.PR], 2010.
%F A330895 a(n) = numerator(fr(n)), where fr(n) = n*(7*n + 13) - 2*(n + 1)*Sum_{k=1..n} 1/k - 4*(n + 1)^2*Sum_{k=1..n} 1/k^2.
%e A330895 The variances are: 0, 0, 0, 2/9, 29/36, 46/25, 3049/900, 60574/11025, 160599/19600, 182789/15876, 4913659/317520, 1072364/53361, ... = A330895/A330907.
%o A330895 (PARI) lista(nn) = {my(va = vector(nn)); for(n=1, nn, va[n] = numerator(n*(7*n+13) - 2*(n+1)*sum(k=1, n, 1/k) - 4*(n+1)^2*sum(k=1, n, 1/k^2))); concat(0,va);}
%Y A330895 Cf. A063090, A067699, A093418, A096620, A115107, A288964, A288965, A288970, A288971, A329001, A330852, A330860, A330875, A330876, A330907 (denominators).
%K A330895 nonn,frac
%O A330895 0,4
%A A330895 _Petros Hadjicostas_, May 01 2020