cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330907 Denominator of the variance of the random number of comparisons in quicksort applied to lists of length n.

This page as a plain text file.
%I A330907 #28 Dec 19 2024 19:13:47
%S A330907 1,1,1,9,36,25,900,11025,19600,15876,317520,53361,38419920,33127380,
%T A330907 144288144,2029052025,129859329600,115831315600,37529346254400,
%U A330907 33870234994596,6144260316480,799769421360,387088399938240,355503061748835,40953952713465792,37864231428870000,316002721554520000,2056839142975402500,1612561888092715560000
%N A330907 Denominator of the variance of the random number of comparisons in quicksort applied to lists of length n.
%D A330907 D. E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching, Addison-Wesley, 1973; see answer to Ex. 8(a) of Section 6.2.2.
%H A330907 S. B. Ekhad and D. Zeilberger, <a href="https://arxiv.org/abs/1903.03708">A detailed analysis of quicksort running time</a>, arXiv:1903.03708 [math.PR], 2019; see Theorem 2.
%H A330907 V. Iliopoulos, <a href="https://arxiv.org/abs/1503.02504">The quicksort algorithm and related topics</a>, arXiv:1503.02504 [cs.DS], 2015.
%H A330907 V. Iliopoulos and D. Penman, <a href="https://arxiv.org/abs/1006.4063">Variance of the number of comparisons of randomized quicksort</a>, arXiv:1006.4063 [math.PR], 2010.
%F A330907 a(n) = denominator(fr(n)), where fr(n) = n*(7*n + 13) - 2*(n+1)*Sum_{k=1..n} (1/k) - 4*(n+1)^2*Sum_{k=1..n} (1/k^2).
%F A330907 a(n) = denominator(2*(n+1)*(H(n,1) + 2*(n+1)*H(n,2))), where H(n,s) are the generalized harmonic numbers. - _Peter Luschny_, May 02 2020
%e A330907 The variances are: 0, 0, 0, 2/9, 29/36, 46/25, 3049/900, 60574/11025, 160599/19600, 182789/15876, 4913659/317520, 1072364/53361, ... = A330895/A330907.
%p A330907 a := n -> denom(2*(n+1)*(harmonic(n,1) + 2*(n+1)*harmonic(n,2))):
%p A330907 seq(a(n), n=0..28); # _Peter Luschny_, May 02 2020
%o A330907 (PARI) lista(nn) = {my(va = vector(nn)); for(n=1, nn, va[n] = denominator(n*(7*n+13) - 2*(n+1)*sum(k=1, n, 1/k) - 4*(n+1)^2*sum(k=1, n, 1/k^2))); concat(1, va); }
%Y A330907 Cf. A063090, A067699, A093418, A096620, A115107, A288964, A288965, A288970, A288971, A329001, A330852, A330860, A330875, A330876, A330895 (numerators).
%K A330907 nonn,frac
%O A330907 0,4
%A A330907 _Petros Hadjicostas_, May 01 2020