cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330912 Sum of the smallest side lengths of all Heronian triangles with perimeter A051518(n).

This page as a plain text file.
%I A330912 #18 Feb 16 2025 08:33:59
%S A330912 3,5,5,6,5,14,38,8,20,11,37,29,43,7,31,64,11,17,37,84,19,15,70,130,22,
%T A330912 87,101,133,122,38,241,25,149,25,111,123,225,39,220,54,120,327,254,57,
%U A330912 103,162,227,371,41,321,34,43,29,278,373,76,70,95,577,567,157,476,221
%N A330912 Sum of the smallest side lengths of all Heronian triangles with perimeter A051518(n).
%H A330912 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HeronianTriangle.html">Heronian Triangle</a>
%H A330912 Wikipedia, <a href="https://en.wikipedia.org/wiki/Heronian_triangle">Heronian triangle</a>
%H A330912 Wikipedia, <a href="https://en.wikipedia.org/wiki/Integer_triangle">Integer Triangle</a>
%F A330912 a(n) = Sum_{k=1..floor(c(n)/3)} Sum_{i=k..floor((c(n)-k)/2)} sign(floor((i+k)/(c(n)-i-k+1))) * chi(sqrt((c(n)/2)*(c(n)/2-i)*(c(n)/2-k)*(c(n)/2-(c(n)-i-k)))) * k, where chi(n) = 1 - ceiling(n) + floor(n) and c(n) = A051518(n). - _Wesley Ivan Hurt_, May 12 2020
%e A330912 a(1) = 3; there is one Heronian triangle with perimeter A051518(1) = 12, which is [3,4,5] and its smallest side length is 3.
%e A330912 a(6) = 14; there are two Heronian triangles with perimeter A051518(6) = 32, [4,13,15] and [10,10,12]. The sum is 4 + 10 = 14.
%Y A330912 Cf. A051516, A051518, A070138, A096468, A298079, A298614, A305717.
%Y A330912 Cf. A330915, A330916.
%K A330912 nonn
%O A330912 1,1
%A A330912 _Wesley Ivan Hurt_, May 02 2020