cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330916 Sum of the largest side lengths of all Heronian triangles with perimeter A051518(n).

This page as a plain text file.
%I A330916 #20 Apr 12 2025 06:31:44
%S A330916 5,6,8,10,13,27,61,17,35,20,59,41,96,25,80,139,30,26,57,157,37,37,140,
%T A330916 296,40,196,207,250,209,91,587,52,294,51,267,214,498,50,539,117,310,
%U A330916 697,530,147,206,342,503,856,73,744,75,68,85,550,793,256,172,155,1270,1202
%N A330916 Sum of the largest side lengths of all Heronian triangles with perimeter A051518(n).
%H A330916 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HeronianTriangle.html">Heronian Triangle</a>
%H A330916 Wikipedia, <a href="https://en.wikipedia.org/wiki/Heronian_triangle">Heronian triangle</a>
%H A330916 Wikipedia, <a href="https://en.wikipedia.org/wiki/Integer_triangle">Integer Triangle</a>
%F A330916 a(n) = Sum_{k=1..floor(c(n)/3)} Sum_{i=k..floor((c(n)-k)/2)} sign(floor((i+k)/(c(n)-i-k+1))) * chi(sqrt((c(n)/2)*(c(n)/2-i)*(c(n)/2-k)*(c(n)/2-(c(n)-i-k)))) * (c(n)-i-k), where chi(n) = 1 - ceiling(n) + floor(n) and c(n) = A051518(n). - _Wesley Ivan Hurt_, May 12 2020
%e A330916 a(1) = 5; there is one Heronian triangle with perimeter A051518(1) = 12, which is [3,4,5] and its largest side length is 5.
%e A330916 a(6) = 27; there are two Heronian triangles with perimeter A051518(6) = 32, [4,13,15] and [10,10,12]. The sum is 15 + 12 = 27.
%Y A330916 Cf. A051516, A051518, A070138, A096468, A298079, A298614, A305717.
%Y A330916 Cf. A330912, A330915.
%K A330916 nonn
%O A330916 1,1
%A A330916 _Wesley Ivan Hurt_, May 02 2020