cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330921 Sum of the areas of all Heronian triangles with perimeter A051518(n).

This page as a plain text file.
%I A330921 #19 Apr 12 2025 06:30:29
%S A330921 6,12,12,24,30,72,198,60,126,66,288,180,360,84,330,648,132,204,420,
%T A330921 876,114,156,840,1764,264,1350,1632,2016,1830,624,3816,330,2604,456,
%U A330921 2280,2352,4800,780,4422,1224,2940,7068,5430,912,2310,3744,5520,9144,984,8736,1020
%N A330921 Sum of the areas of all Heronian triangles with perimeter A051518(n).
%H A330921 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HeronianTriangle.html">Heronian Triangle</a>
%H A330921 Wikipedia, <a href="https://en.wikipedia.org/wiki/Heronian_triangle">Heronian triangle</a>
%H A330921 Wikipedia, <a href="https://en.wikipedia.org/wiki/Integer_triangle">Integer Triangle</a>
%F A330921 a(n) = Sum_{k=1..floor(c(n)/3)} Sum_{i=k..floor((c(n)-k)/2)} sign(floor((i+k)/(c(n)-i-k+1))) * chi(sqrt((c(n)/2)*(c(n)/2-i)*(c(n)/2-k)*(c(n)/2-(c(n)-i-k)))) * sqrt((c(n)/2)*(c(n)/2-i)*(c(n)/2-k)*(c(n)/2-(c(n)-i-k))), where chi(n) = 1 - ceiling(n) + floor(n) and c(n) = A051518(n). - _Wesley Ivan Hurt_, May 12 2020
%e A330921 a(1) = 6; there is one Heronian triangle with perimeter A051518(1) = 12, which is [3,4,5] and its area is 3*4/2 = 6.
%e A330921 a(6) = 72; there are two Heronian triangles with perimeter A051518(6) = 32, [4,13,15] and [10,10,12]. The sum of their areas 24 + 48 = 72.
%Y A330921 Cf. A051516, A051518, A070138, A096468, A298079, A298614, A305717.
%Y A330921 Cf. A330912, A330915, A330916.
%K A330921 nonn
%O A330921 1,1
%A A330921 _Wesley Ivan Hurt_, May 02 2020