A330935 Irregular triangle read by rows where T(n,k) is the number of length-k chains from minimum to maximum in the poset of factorizations of n into factors > 1, ordered by refinement.
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 3, 2, 1, 0, 1, 2, 1, 0, 1, 2, 0, 1, 0, 1, 1, 0, 1, 5, 5, 0, 1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 1, 0, 1, 5, 8, 4, 0, 1, 0, 1, 0, 1, 0, 1, 7, 7, 1, 0, 1, 0, 1, 0, 1, 5, 5, 1, 0, 1
Offset: 1
Examples
Triangle begins: 1: 16: 0 1 3 2 31: 1 46: 0 1 2: 1 17: 1 32: 0 1 5 8 4 47: 1 3: 1 18: 0 1 2 33: 0 1 48: 0 1 10 23 15 4: 0 1 19: 1 34: 0 1 49: 0 1 5: 1 20: 0 1 2 35: 0 1 50: 0 1 2 6: 0 1 21: 0 1 36: 0 1 7 7 51: 0 1 7: 1 22: 0 1 37: 1 52: 0 1 2 8: 0 1 1 23: 1 38: 0 1 53: 1 9: 0 1 24: 0 1 5 5 39: 0 1 54: 0 1 5 5 10: 0 1 25: 0 1 40: 0 1 5 5 55: 0 1 11: 1 26: 0 1 41: 1 56: 0 1 5 5 12: 0 1 2 27: 0 1 1 42: 0 1 3 57: 0 1 13: 1 28: 0 1 2 43: 1 58: 0 1 14: 0 1 29: 1 44: 0 1 2 59: 1 15: 0 1 30: 0 1 3 45: 0 1 2 60: 0 1 9 11 Row n = 48 counts the following chains (minimum and maximum not shown): () (6*8) (2*3*8)->(6*8) (2*2*2*6)->(2*4*6)->(6*8) (2*24) (2*4*6)->(6*8) (2*2*3*4)->(2*3*8)->(6*8) (3*16) (2*3*8)->(2*24) (2*2*3*4)->(2*4*6)->(6*8) (4*12) (2*3*8)->(3*16) (2*2*2*6)->(2*4*6)->(2*24) (2*3*8) (2*4*6)->(2*24) (2*2*2*6)->(2*4*6)->(4*12) (2*4*6) (2*4*6)->(4*12) (2*2*3*4)->(2*3*8)->(2*24) (3*4*4) (3*4*4)->(3*16) (2*2*3*4)->(2*3*8)->(3*16) (2*2*12) (3*4*4)->(4*12) (2*2*3*4)->(2*4*6)->(2*24) (2*2*2*6) (2*2*12)->(2*24) (2*2*3*4)->(2*4*6)->(4*12) (2*2*3*4) (2*2*12)->(4*12) (2*2*3*4)->(3*4*4)->(3*16) (2*2*2*6)->(6*8) (2*2*3*4)->(3*4*4)->(4*12) (2*2*3*4)->(6*8) (2*2*2*6)->(2*2*12)->(2*24) (2*2*2*6)->(2*24) (2*2*2*6)->(2*2*12)->(4*12) (2*2*2*6)->(4*12) (2*2*3*4)->(2*2*12)->(2*24) (2*2*3*4)->(2*24) (2*2*3*4)->(2*2*12)->(4*12) (2*2*3*4)->(3*16) (2*2*3*4)->(4*12) (2*2*2*6)->(2*4*6) (2*2*3*4)->(2*3*8) (2*2*3*4)->(2*4*6) (2*2*3*4)->(3*4*4) (2*2*2*6)->(2*2*12) (2*2*3*4)->(2*2*12)
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; upfacs[q_]:=Union[Sort/@Join@@@Tuples[facs/@q]]; paths[eds_,start_,end_]:=If[start==end,Prepend[#,{}],#]&[Join@@Table[Prepend[#,e]&/@paths[eds,Last[e],end],{e,Select[eds,First[#]==start&]}]]; Table[Length[Select[paths[Join@@Table[{y,#}&/@DeleteCases[upfacs[y],y],{y,facs[n]}],{n},First[facs[n]]],Length[#]==k-1&]],{n,100},{k,PrimeOmega[n]}]
Formula
T(2^n,k) = A330785(n,k).
T(n,1) + T(n,2) = 1.
Comments