cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330935 Irregular triangle read by rows where T(n,k) is the number of length-k chains from minimum to maximum in the poset of factorizations of n into factors > 1, ordered by refinement.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 3, 2, 1, 0, 1, 2, 1, 0, 1, 2, 0, 1, 0, 1, 1, 0, 1, 5, 5, 0, 1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 1, 0, 1, 5, 8, 4, 0, 1, 0, 1, 0, 1, 0, 1, 7, 7, 1, 0, 1, 0, 1, 0, 1, 5, 5, 1, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 04 2020

Keywords

Comments

This poset is equivalent to the poset of multiset partitions of the prime indices of n, ordered by refinement.

Examples

			Triangle begins:
   1:          16: 0 1 3 2    31: 1            46: 0 1
   2: 1        17: 1          32: 0 1 5 8 4    47: 1
   3: 1        18: 0 1 2      33: 0 1          48: 0 1 10 23 15
   4: 0 1      19: 1          34: 0 1          49: 0 1
   5: 1        20: 0 1 2      35: 0 1          50: 0 1 2
   6: 0 1      21: 0 1        36: 0 1 7 7      51: 0 1
   7: 1        22: 0 1        37: 1            52: 0 1 2
   8: 0 1 1    23: 1          38: 0 1          53: 1
   9: 0 1      24: 0 1 5 5    39: 0 1          54: 0 1 5 5
  10: 0 1      25: 0 1        40: 0 1 5 5      55: 0 1
  11: 1        26: 0 1        41: 1            56: 0 1 5 5
  12: 0 1 2    27: 0 1 1      42: 0 1 3        57: 0 1
  13: 1        28: 0 1 2      43: 1            58: 0 1
  14: 0 1      29: 1          44: 0 1 2        59: 1
  15: 0 1      30: 0 1 3      45: 0 1 2        60: 0 1 9 11
Row n = 48 counts the following chains (minimum and maximum not shown):
  ()  (6*8)      (2*3*8)->(6*8)       (2*2*2*6)->(2*4*6)->(6*8)
      (2*24)     (2*4*6)->(6*8)       (2*2*3*4)->(2*3*8)->(6*8)
      (3*16)     (2*3*8)->(2*24)      (2*2*3*4)->(2*4*6)->(6*8)
      (4*12)     (2*3*8)->(3*16)      (2*2*2*6)->(2*4*6)->(2*24)
      (2*3*8)    (2*4*6)->(2*24)      (2*2*2*6)->(2*4*6)->(4*12)
      (2*4*6)    (2*4*6)->(4*12)      (2*2*3*4)->(2*3*8)->(2*24)
      (3*4*4)    (3*4*4)->(3*16)      (2*2*3*4)->(2*3*8)->(3*16)
      (2*2*12)   (3*4*4)->(4*12)      (2*2*3*4)->(2*4*6)->(2*24)
      (2*2*2*6)  (2*2*12)->(2*24)     (2*2*3*4)->(2*4*6)->(4*12)
      (2*2*3*4)  (2*2*12)->(4*12)     (2*2*3*4)->(3*4*4)->(3*16)
                 (2*2*2*6)->(6*8)     (2*2*3*4)->(3*4*4)->(4*12)
                 (2*2*3*4)->(6*8)     (2*2*2*6)->(2*2*12)->(2*24)
                 (2*2*2*6)->(2*24)    (2*2*2*6)->(2*2*12)->(4*12)
                 (2*2*2*6)->(4*12)    (2*2*3*4)->(2*2*12)->(2*24)
                 (2*2*3*4)->(2*24)    (2*2*3*4)->(2*2*12)->(4*12)
                 (2*2*3*4)->(3*16)
                 (2*2*3*4)->(4*12)
                 (2*2*2*6)->(2*4*6)
                 (2*2*3*4)->(2*3*8)
                 (2*2*3*4)->(2*4*6)
                 (2*2*3*4)->(3*4*4)
                 (2*2*2*6)->(2*2*12)
                 (2*2*3*4)->(2*2*12)
		

Crossrefs

Row lengths are A001222.
Row sums are A317176.
Column k = 1 is A010051.
Column k = 2 is A066247.
Column k = 3 is A330936.
Final terms of each row are A317145.
The version for set partitions is A008826, with row sums A005121.
The version for integer partitions is A330785, with row sums A213427.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    upfacs[q_]:=Union[Sort/@Join@@@Tuples[facs/@q]];
    paths[eds_,start_,end_]:=If[start==end,Prepend[#,{}],#]&[Join@@Table[Prepend[#,e]&/@paths[eds,Last[e],end],{e,Select[eds,First[#]==start&]}]];
    Table[Length[Select[paths[Join@@Table[{y,#}&/@DeleteCases[upfacs[y],y],{y,facs[n]}],{n},First[facs[n]]],Length[#]==k-1&]],{n,100},{k,PrimeOmega[n]}]

Formula

T(2^n,k) = A330785(n,k).
T(n,1) + T(n,2) = 1.