This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330937 #5 Mar 09 2020 18:25:08 %S A330937 1,2,3,5,7,10,15,20,27,35,49,58,81,100,126,160,206,246,316,374,462, %T A330937 564,696,813,1006,1195,1441,1701,2058,2394,2896,3367,4007,4670,5542, %U A330937 6368,7540,8702,10199,11734,13760,15734,18384,21008,24441,27893,32380,36841 %N A330937 Number of strictly recursively normal integer partitions of n. %C A330937 A sequence is strictly recursively normal if either it empty, its run-lengths are distinct (strict), or its run-lengths cover an initial interval of positive integers (normal) and are themselves a strictly recursively normal sequence. %e A330937 The a(1) = 1 through a(9) = 15 partitions: %e A330937 (1) (2) (3) (4) (5) (6) (7) (8) (9) %e A330937 (21) (31) (32) (42) (43) (53) (54) %e A330937 (211) (41) (51) (52) (62) (63) %e A330937 (221) (321) (61) (71) (72) %e A330937 (311) (411) (322) (332) (81) %e A330937 (331) (422) (432) %e A330937 (421) (431) (441) %e A330937 (511) (521) (522) %e A330937 (3211) (611) (531) %e A330937 (3221) (621) %e A330937 (4211) (711) %e A330937 (3321) %e A330937 (4221) %e A330937 (4311) %e A330937 (5211) %e A330937 (32211) %t A330937 normQ[m_]:=m=={}||Union[m]==Range[Max[m]]; %t A330937 recnQ[ptn_]:=With[{qtn=Length/@Split[ptn]},Or[ptn=={},UnsameQ@@qtn,And[normQ[qtn],recnQ[qtn]]]]; %t A330937 Table[Length[Select[IntegerPartitions[n],recnQ]],{n,0,30}] %Y A330937 The narrow instead of strict version is A332272. %Y A330937 A wide instead of strict version is A332295(n) - 1 for n > 1. %Y A330937 Cf. A107429, A181819, A316496, A317081, A317245, A317491, A329744, A329746, A329766, A332277, A332576. %K A330937 nonn %O A330937 0,2 %A A330937 _Gus Wiseman_, Mar 09 2020