cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330937 Number of strictly recursively normal integer partitions of n.

This page as a plain text file.
%I A330937 #5 Mar 09 2020 18:25:08
%S A330937 1,2,3,5,7,10,15,20,27,35,49,58,81,100,126,160,206,246,316,374,462,
%T A330937 564,696,813,1006,1195,1441,1701,2058,2394,2896,3367,4007,4670,5542,
%U A330937 6368,7540,8702,10199,11734,13760,15734,18384,21008,24441,27893,32380,36841
%N A330937 Number of strictly recursively normal integer partitions of n.
%C A330937 A sequence is strictly recursively normal if either it empty, its run-lengths are distinct (strict), or its run-lengths cover an initial interval of positive integers (normal) and are themselves a strictly recursively normal sequence.
%e A330937 The a(1) = 1 through a(9) = 15 partitions:
%e A330937   (1)  (2)  (3)   (4)    (5)    (6)    (7)     (8)     (9)
%e A330937             (21)  (31)   (32)   (42)   (43)    (53)    (54)
%e A330937                   (211)  (41)   (51)   (52)    (62)    (63)
%e A330937                          (221)  (321)  (61)    (71)    (72)
%e A330937                          (311)  (411)  (322)   (332)   (81)
%e A330937                                        (331)   (422)   (432)
%e A330937                                        (421)   (431)   (441)
%e A330937                                        (511)   (521)   (522)
%e A330937                                        (3211)  (611)   (531)
%e A330937                                                (3221)  (621)
%e A330937                                                (4211)  (711)
%e A330937                                                        (3321)
%e A330937                                                        (4221)
%e A330937                                                        (4311)
%e A330937                                                        (5211)
%e A330937                                                        (32211)
%t A330937 normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
%t A330937 recnQ[ptn_]:=With[{qtn=Length/@Split[ptn]},Or[ptn=={},UnsameQ@@qtn,And[normQ[qtn],recnQ[qtn]]]];
%t A330937 Table[Length[Select[IntegerPartitions[n],recnQ]],{n,0,30}]
%Y A330937 The narrow instead of strict version is A332272.
%Y A330937 A wide instead of strict version is A332295(n) - 1 for n > 1.
%Y A330937 Cf. A107429, A181819, A316496, A317081, A317245, A317491, A329744, A329746, A329766, A332277, A332576.
%K A330937 nonn
%O A330937 0,2
%A A330937 _Gus Wiseman_, Mar 09 2020