cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330940 a(n) is the least value whose binary representation can be obtained by interleaving (or shuffling) two copies of the binary representation of n.

This page as a plain text file.
%I A330940 #16 Apr 22 2020 19:23:26
%S A330940 0,3,10,15,36,43,54,63,136,147,170,175,204,219,238,255,528,547,586,
%T A330940 591,660,683,694,703,792,819,858,879,924,955,990,1023,2080,2115,2186,
%U A330940 2191,2340,2347,2358,2367,2600,2643,2730,2735,2764,2779,2798,2815,3120,3171
%N A330940 a(n) is the least value whose binary representation can be obtained by interleaving (or shuffling) two copies of the binary representation of n.
%C A330940 The binary representation of all positive terms are square binary words (see A191755).
%H A330940 Rémy Sigrist, <a href="/A330940/b330940.txt">Table of n, a(n) for n = 0..8192</a>
%H A330940 Rémy Sigrist, <a href="/A330940/a330940.png">Logarithmic scatterplot of the first difference of the first 2^13 terms</a>
%H A330940 Rémy Sigrist, <a href="/A330940/a330940.gp.txt">PARI program for A330940</a>
%H A330940 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%F A330940 a(2^k) = 2^k*(1+2^(k+1)) = A007582(k+1) for any k >= 0.
%F A330940 a(2^k-1) = 4^k-1 = A024036(k) for any k >= 0.
%F A330940 a(n) <= A330941(n).
%e A330940 The first terms, alongside the binary representation of n and of a(n), are:
%e A330940   n   a(n)  bin(n)  bin(a(n))
%e A330940   --  ----  ------  ---------
%e A330940    0     0       0          0
%e A330940    1     3       1         11
%e A330940    2    10      10       1010
%e A330940    3    15      11       1111
%e A330940    4    36     100     100100
%e A330940    5    43     101     101011
%e A330940    6    54     110     110110
%e A330940    7    63     111     111111
%e A330940    8   136    1000   10001000
%e A330940    9   147    1001   10010011
%e A330940   10   170    1010   10101010
%e A330940   11   175    1011   10101111
%o A330940 (PARI) See Links section.
%Y A330940 See A330941 for the maximum variant.
%Y A330940 Cf. A007582, A024036, A191755, A193020.
%K A330940 nonn,base
%O A330940 0,2
%A A330940 _Rémy Sigrist_, Jan 04 2020