This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330941 #18 Apr 22 2020 19:23:34 %S A330941 0,3,12,15,48,53,60,63,192,201,212,219,240,245,252,255,768,785,804, %T A330941 819,848,853,876,887,960,969,980,987,1008,1013,1020,1023,3072,3105, %U A330941 3140,3171,3216,3237,3276,3303,3392,3401,3412,3435,3504,3509,3548,3567,3840,3857 %N A330941 a(n) is the greatest value whose binary representation can be obtained by interleaving (or shuffling) two copies of the binary representation of n. %C A330941 The binary representation of all positive terms are square binary words (see A191755). %H A330941 Rémy Sigrist, <a href="/A330941/b330941.txt">Table of n, a(n) for n = 0..8192</a> %H A330941 Rémy Sigrist, <a href="/A330941/a330941.png">Logarithmic scatterplot of the first difference of the first 2^13 terms</a> %H A330941 Rémy Sigrist, <a href="/A330941/a330941.gp.txt">PARI program for A330941</a> %H A330941 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A330941 a(2^k) = 3*4^k = A002001(k+1) for any k >= 0. %F A330941 a(2^k-1) = 4^k-1 = A024036(k) for any k >= 0. %F A330941 a(n) >= A330940(n). %e A330941 The first terms, alongside the binary representations of n and of a(n), are: %e A330941 n a(n) bin(n) bin(a(n)) %e A330941 -- ---- ------ ---------- %e A330941 0 0 0 0 %e A330941 1 3 1 11 %e A330941 2 12 10 1100 %e A330941 3 15 11 1111 %e A330941 4 48 100 110000 %e A330941 5 53 101 110101 %e A330941 6 60 110 111100 %e A330941 7 63 111 111111 %e A330941 8 192 1000 11000000 %e A330941 9 201 1001 11001001 %e A330941 10 212 1010 11010100 %e A330941 11 219 1011 11011011 %e A330941 12 240 1100 11110000 %o A330941 (PARI) See Links section. %Y A330941 See A330940 for the minimum variant. %Y A330941 Cf. A002001, A024036, A191755, A193020. %K A330941 nonn,base %O A330941 0,2 %A A330941 _Rémy Sigrist_, Jan 04 2020