This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330942 #29 Apr 10 2020 08:16:41 %S A330942 1,1,1,1,1,1,1,2,1,1,1,4,7,1,1,1,8,75,32,1,1,1,16,1105,2712,161,1,1,1, %T A330942 32,20821,449102,116681,842,1,1,1,64,478439,122886128,231522891, %U A330942 5366384,4495,1,1,1,128,12977815,50225389432,975712562347,131163390878,256461703,24320,1,1 %N A330942 Array read by antidiagonals: A(n,k) is the number of binary matrices with k columns and any number of nonzero rows with n ones in every column and columns in nonincreasing lexicographic order. %C A330942 The condition that the columns be in nonincreasing order is equivalent to considering nonequivalent matrices up to permutation of columns. %C A330942 A(n,k) is the number of labeled n-uniform hypergraphs with multiple edges allowed and with k edges and no isolated vertices. When n=2 these objects are multigraphs. %H A330942 Andrew Howroyd, <a href="/A330942/b330942.txt">Table of n, a(n) for n = 0..1325</a> %F A330942 A(n,k) = Sum_{j=0..n*k} binomial(binomial(j,n)+k-1, k) * (Sum_{i=j..n*k} (-1)^(i-j)*binomial(i,j)). %F A330942 A(n, k) = Sum_{j=0..k} abs(Stirling1(k, j))*A262809(n, j)/k!. %F A330942 A(n, k) = Sum_{j=0..k} binomial(k-1, k-j)*A331277(n, j). %F A330942 A331638(n) = Sum_{d|n} A(n/d, d). %e A330942 Array begins: %e A330942 ============================================================ %e A330942 n\k | 0 1 2 3 4 5 %e A330942 ----+------------------------------------------------------- %e A330942 0 | 1 1 1 1 1 1 ... %e A330942 1 | 1 1 2 4 8 16 ... %e A330942 2 | 1 1 7 75 1105 20821 ... %e A330942 3 | 1 1 32 2712 449102 122886128 ... %e A330942 4 | 1 1 161 116681 231522891 975712562347 ... %e A330942 5 | 1 1 842 5366384 131163390878 8756434117294432 ... %e A330942 6 | 1 1 4495 256461703 78650129124911 ... %e A330942 ... %e A330942 The A(2,2) = 7 matrices are: %e A330942 [1 0] [1 0] [1 0] [1 1] [1 0] [1 0] [1 1] %e A330942 [1 0] [0 1] [0 1] [1 0] [1 1] [0 1] [1 1] %e A330942 [0 1] [1 0] [0 1] [0 1] [0 1] [1 1] %e A330942 [0 1] [0 1] [1 0] %t A330942 T[n_, k_] := With[{m = n k}, Sum[Binomial[Binomial[j, n] + k - 1, k] Sum[ (-1)^(i - j) Binomial[i, j], {i, j, m}], {j, 0, m}]]; %t A330942 Table[T[n - k, k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover_, Apr 10 2020, from PARI *) %o A330942 (PARI) T(n, k)={my(m=n*k); sum(j=0, m, binomial(binomial(j, n)+k-1, k)*sum(i=j, m, (-1)^(i-j)*binomial(i, j)))} %Y A330942 Rows n=1..3 are A000012, A121316, A136246. %Y A330942 Columns k=0..3 are A000012, A000012, A226994, A137220. %Y A330942 The version with nonnegative integer entries is A331315. %Y A330942 Other variations considering distinct rows and columns and equivalence under different combinations of permutations of rows and columns are: %Y A330942 All solutions: A262809 (all), A331567 (distinct rows). %Y A330942 Up to row permutation: A188392, A188445, A331126, A331039. %Y A330942 Up to column permutation: this sequence, A331571, A331277, A331569. %Y A330942 Nonisomorphic: A331461, A331510, A331508, A331509. %Y A330942 Cf. A331638. %K A330942 nonn,tabl %O A330942 0,8 %A A330942 _Andrew Howroyd_, Jan 13 2020