This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330945 #7 Jan 14 2020 22:16:59 %S A330945 2,4,6,7,8,10,12,13,14,16,18,19,20,21,22,23,24,26,28,29,30,32,34,35, %T A330945 36,37,38,39,40,42,43,44,46,47,48,49,50,52,53,54,56,57,58,60,61,62,63, %U A330945 64,65,66,68,69,70,71,72,73,74,76,77,78,79,80,82,84,86,87 %N A330945 Numbers whose prime indices are not all prime numbers. %C A330945 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A330945 The sequence of terms together with their prime indices of prime indices begins: %e A330945 2: {{}} %e A330945 4: {{},{}} %e A330945 6: {{},{1}} %e A330945 7: {{1,1}} %e A330945 8: {{},{},{}} %e A330945 10: {{},{2}} %e A330945 12: {{},{},{1}} %e A330945 13: {{1,2}} %e A330945 14: {{},{1,1}} %e A330945 16: {{},{},{},{}} %e A330945 18: {{},{1},{1}} %e A330945 19: {{1,1,1}} %e A330945 20: {{},{},{2}} %e A330945 21: {{1},{1,1}} %e A330945 22: {{},{3}} %e A330945 23: {{2,2}} %e A330945 24: {{},{},{},{1}} %e A330945 26: {{},{1,2}} %e A330945 28: {{},{},{1,1}} %e A330945 29: {{1,3}} %t A330945 Select[Range[100],!And@@PrimeQ/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]&] %Y A330945 Complement of A076610 (products of primes of prime index). %Y A330945 Numbers n such that A330944(n) > 0. %Y A330945 The restriction to odd terms is A330946. %Y A330945 The restriction to nonprimes is A330948. %Y A330945 The number of prime prime indices is given by A257994. %Y A330945 The number of nonprime prime indices is given by A330944. %Y A330945 Primes of prime index are A006450. %Y A330945 Primes of nonprime index are A007821. %Y A330945 Products of primes of nonprime index are A320628. %Y A330945 The set S of numbers whose prime indices do not all belong to S is A324694. %Y A330945 Cf. A000040, A000720, A001222, A018252, A056239, A112798, A302242, A320633, A330943, A330947, A330949. %K A330945 nonn %O A330945 1,1 %A A330945 _Gus Wiseman_, Jan 13 2020