This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330948 #6 Jan 14 2020 22:17:21 %S A330948 4,6,8,10,12,14,16,18,20,21,22,24,26,28,30,32,34,35,36,38,39,40,42,44, %T A330948 46,48,49,50,52,54,56,57,58,60,62,63,64,65,66,68,69,70,72,74,76,77,78, %U A330948 80,82,84,86,87,88,90,91,92,94,95,96,98,100,102,104,105,106 %N A330948 Nonprime numbers whose prime indices are not all prime numbers. %C A330948 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A330948 The sequence of terms together with their prime indices of prime indices begins: %e A330948 4: {{},{}} %e A330948 6: {{},{1}} %e A330948 8: {{},{},{}} %e A330948 10: {{},{2}} %e A330948 12: {{},{},{1}} %e A330948 14: {{},{1,1}} %e A330948 16: {{},{},{},{}} %e A330948 18: {{},{1},{1}} %e A330948 20: {{},{},{2}} %e A330948 21: {{1},{1,1}} %e A330948 22: {{},{3}} %e A330948 24: {{},{},{},{1}} %e A330948 26: {{},{1,2}} %e A330948 28: {{},{},{1,1}} %e A330948 30: {{},{1},{2}} %e A330948 32: {{},{},{},{},{}} %e A330948 34: {{},{4}} %e A330948 35: {{2},{1,1}} %e A330948 36: {{},{},{1},{1}} %e A330948 38: {{},{1,1,1}} %t A330948 Select[Range[100],!PrimeQ[#]&&!And@@PrimeQ/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]&] %Y A330948 Complement in A330945 of A000040. %Y A330948 Complement in A018252 of A076610. %Y A330948 The restriction to odd terms is A330949. %Y A330948 Nonprime numbers n such that A330944(n) > 0. %Y A330948 Taking odds instead of nonprimes gives A330946. %Y A330948 The number of prime prime indices is given by A257994. %Y A330948 Primes of prime index are A006450. %Y A330948 Primes of nonprime index are A007821. %Y A330948 Products of primes of nonprime index are A320628. %Y A330948 The set S of numbers whose prime indices do not all belong to S is A324694. %Y A330948 Cf. A000720, A001222, A056239, A112798, A302242, A320629, A320633, A330943, A330947. %K A330948 nonn %O A330948 1,1 %A A330948 _Gus Wiseman_, Jan 13 2020