This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330950 #5 Jan 15 2020 18:39:36 %S A330950 1,1,1,2,2,3,3,7,7,11,11,22,15,30,42,77,42,101,56,176,176,231,135,490, %T A330950 490,490,792,1002,490,1575,627,3010,2436,2436,3718,5604,1958,4565, %U A330950 6842,12310,3718,14883,4565,21637,26015,17977,8349,53174,44583,63261 %N A330950 Number of integer partitions of n whose Heinz number (product of primes of parts) is divisible by n. %C A330950 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %e A330950 The a(1) = 1 through a(10) = 11 partitions: %e A330950 1 11 21 211 32 321 43 5111 522 631 %e A330950 1111 311 2211 421 32111 3222 3331 %e A330950 21111 4111 41111 4221 4321 %e A330950 221111 22221 5311 %e A330950 311111 32211 32221 %e A330950 2111111 222111 33211 %e A330950 11111111 2211111 43111 %e A330950 322111 %e A330950 331111 %e A330950 3211111 %e A330950 31111111 %e A330950 For example, the Heinz number of (3,2) is 15, which is divisible by 5, so (3,2) is counted under a(5). %t A330950 Table[Length[Select[IntegerPartitions[n],Divisible[Times@@Prime/@#,n]&]],{n,20}] %Y A330950 The Heinz numbers of these partitions are given by A324851. %Y A330950 Partitions whose product is divisible by their sum are A057568. %Y A330950 Partitions whose Heinz number is divisible by all parts are A330952. %Y A330950 Partitions whose Heinz number is divisible by their product are A324925. %Y A330950 Cf. A056239, A112798, A196050, A324850, A324924, A330953, A330954, A331379, A331381, A331383, A331384. %K A330950 nonn %O A330950 1,4 %A A330950 _Gus Wiseman_, Jan 15 2020