cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330950 Number of integer partitions of n whose Heinz number (product of primes of parts) is divisible by n.

This page as a plain text file.
%I A330950 #5 Jan 15 2020 18:39:36
%S A330950 1,1,1,2,2,3,3,7,7,11,11,22,15,30,42,77,42,101,56,176,176,231,135,490,
%T A330950 490,490,792,1002,490,1575,627,3010,2436,2436,3718,5604,1958,4565,
%U A330950 6842,12310,3718,14883,4565,21637,26015,17977,8349,53174,44583,63261
%N A330950 Number of integer partitions of n whose Heinz number (product of primes of parts) is divisible by n.
%C A330950 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%e A330950 The a(1) = 1 through a(10) = 11 partitions:
%e A330950   1  11  21  211   32   321    43    5111      522      631
%e A330950              1111  311  2211   421   32111     3222     3331
%e A330950                         21111  4111  41111     4221     4321
%e A330950                                      221111    22221    5311
%e A330950                                      311111    32211    32221
%e A330950                                      2111111   222111   33211
%e A330950                                      11111111  2211111  43111
%e A330950                                                         322111
%e A330950                                                         331111
%e A330950                                                         3211111
%e A330950                                                         31111111
%e A330950 For example, the Heinz number of (3,2) is 15, which is divisible by 5, so (3,2) is counted under a(5).
%t A330950 Table[Length[Select[IntegerPartitions[n],Divisible[Times@@Prime/@#,n]&]],{n,20}]
%Y A330950 The Heinz numbers of these partitions are given by A324851.
%Y A330950 Partitions whose product is divisible by their sum are A057568.
%Y A330950 Partitions whose Heinz number is divisible by all parts are A330952.
%Y A330950 Partitions whose Heinz number is divisible by their product are A324925.
%Y A330950 Cf. A056239, A112798, A196050, A324850, A324924, A330953, A330954, A331379, A331381, A331383, A331384.
%K A330950 nonn
%O A330950 1,4
%A A330950 _Gus Wiseman_, Jan 15 2020