This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330951 #12 Nov 16 2021 07:10:17 %S A330951 1,1,1,3,5,11,24,52,119,272,635,1499,3577,8614,20903,51076,125565, %T A330951 310302,770536,1921440,4809851,12081986,30445041,76938794,194950040, %U A330951 495174037,1260576786,3215772264,8219437433,21046602265,53982543827,138678541693,356785641107 %N A330951 Number of singleton-reduced unlabeled rooted trees with n nodes. %C A330951 A rooted tree is singleton-reduced if no non-leaf node has all singleton branches, where a rooted tree is a singleton if its root has degree 1. %H A330951 Andrew Howroyd, <a href="/A330951/b330951.txt">Table of n, a(n) for n = 1..1000</a> %F A330951 G.f.: A(x) satisfies A(x) = x + x*exp(Sum_{k>=1} A(x^k)/k) - x*exp(Sum_{k>=1} x^k*A(x^k)/(1 + x^k)/k). - _Andrew Howroyd_, Dec 10 2020 %F A330951 a(n) ~ c * d^n / n^(3/2), where d = 2.69474016697407303512228736537683134987637576... and c = 0.41800971384719166056172258174139385922545... - _Vaclav Kotesovec_, Nov 16 2021 %e A330951 The a(1) = 1 through a(6) = 11 trees: %e A330951 o (o) (oo) (ooo) (oooo) (ooooo) %e A330951 ((oo)) ((ooo)) ((oooo)) %e A330951 (o(o)) (o(oo)) (o(ooo)) %e A330951 (oo(o)) (oo(oo)) %e A330951 ((o(o))) (ooo(o)) %e A330951 ((o)(oo)) %e A330951 ((o(oo))) %e A330951 ((oo(o))) %e A330951 (o((oo))) %e A330951 (o(o)(o)) %e A330951 (o(o(o))) %t A330951 urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]],{ptn,IntegerPartitions[n-1]}]; %t A330951 Table[Length[Select[urt[n],FreeQ[#,q:{__List}/;Times@@Length/@q==1]&]],{n,10}] %o A330951 (PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} %o A330951 seq(n)={my(v=vector(n)); v[1]=1; for(n=1, #v-1, v[n+1] = EulerT(v[1..n])[n] - EulerT(Vec(x^2*Ser(v[1..n-1])/(1+x), -n))[n]); v} \\ _Andrew Howroyd_, Dec 10 2020 %Y A330951 The Matula-Goebel numbers of these trees are given by A330943. %Y A330951 The series-reduced case is A001678. %Y A330951 Unlabeled rooted trees are counted by A000081. %Y A330951 Singleton-reduced phylogenetic trees are A000311. %Y A330951 Cf. A000669, A003238, A004111, A324694. %K A330951 nonn %O A330951 1,4 %A A330951 _Gus Wiseman_, Jan 15 2020 %E A330951 Terms a(19) and beyond from _Andrew Howroyd_, Dec 10 2020