This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330952 #4 Jan 15 2020 22:48:30 %S A330952 1,1,1,2,2,3,5,6,8,11,14,20,25,32,42,54,69,87,109,137,172,215,269,331, %T A330952 409,499,612,751,917,1111,1344,1626,1963,2359,2834,3396,4065,4849, %U A330952 5779,6865,8146,9658,11424,13483,15898,18710,21999,25823,30272,35417,41397 %N A330952 Number of integer partitions of n whose Heinz number (product of primes of parts) is divisible by all parts. %C A330952 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %e A330952 The a(1) = 1 through a(9) = 11 partitions: %e A330952 1 11 21 211 221 321 2221 3221 621 %e A330952 111 1111 2111 411 3211 4211 3321 %e A330952 11111 2211 4111 22211 22221 %e A330952 21111 22111 32111 32211 %e A330952 111111 211111 41111 42111 %e A330952 1111111 221111 222111 %e A330952 2111111 321111 %e A330952 11111111 411111 %e A330952 2211111 %e A330952 21111111 %e A330952 111111111 %t A330952 Table[Length[Select[IntegerPartitions[n],And@@Table[Divisible[Times@@Prime/@#,i],{i,#}]&]],{n,0,30}] %Y A330952 The Heinz numbers of these partitions are given by A120383. %Y A330952 Partitions whose product is divisible by their sum are A057568. %Y A330952 Partitions whose Heinz number is divisible by their product are A324925. %Y A330952 Partitions whose Heinz number is divisible by their sum are A330950. %Y A330952 Cf. A056239, A112798, A324756, A326149, A326155, A330953, A330954, A331383. %K A330952 nonn %O A330952 0,4 %A A330952 _Gus Wiseman_, Jan 15 2020