This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330965 #20 Aug 24 2025 11:30:12 %S A330965 1,1,1,1,2,2,1,3,6,5,1,4,10,20,14,1,5,14,35,70,42,1,6,18,50,126,252, %T A330965 132,1,7,22,65,182,462,924,429,1,8,26,80,238,672,1716,3432,1430,1,9, %U A330965 30,95,294,882,2508,6435,12870,4862,1,10,34,110,350,1092,3300,9438,24310,48620,16796 %N A330965 Array read by descending antidiagonals: A(n,k) = (1 + k*n)*C(n) where C(n) = Catalan numbers (A000108). %D A330965 A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196. %H A330965 Andrew Howroyd, <a href="/A330965/b330965.txt">Table of n, a(n) for n = 0..1325</a> %F A330965 A(n,k) = (1 + k*n)*binomial(2*n,n)/(n+1). %F A330965 A(n,k) = 2*(k*n+1)*(2*n-1)*A(n-1,k)/((n+1)*(k*n-k+1)) for n > 0. %F A330965 G.f. of column k: (k - 1 - (2*k-4)*x - (k-1)*sqrt(1 - 4*x))/(2*x*sqrt(1 - 4*x)). %e A330965 Array begins: %e A330965 ==================================================== %e A330965 n\k | 0 1 2 3 4 5 6 7 %e A330965 ----+----------------------------------------------- %e A330965 0 | 1 1 1 1 1 1 1 1 ... %e A330965 1 | 1 2 3 4 5 6 7 8 ... %e A330965 2 | 2 6 10 14 18 22 26 30 ... %e A330965 3 | 5 20 35 50 65 80 95 110 ... %e A330965 4 | 14 70 126 182 238 294 350 406 ... %e A330965 5 | 42 252 462 672 882 1092 1302 1512 ... %e A330965 6 | 132 924 1716 2508 3300 4092 4884 5676 ... %e A330965 7 | 429 3432 6435 9438 12441 15444 18447 21450 ... %e A330965 ... %t A330965 A330965[n_, k_] := CatalanNumber[n]*(k*n + 1); %t A330965 Table[A330965[k, n - k], {n, 0, 10}, {k, 0, n}] (* _Paolo Xausa_, Aug 24 2025 *) %o A330965 (PARI) T(n, k)={(1 + k*n)*binomial(2*n,n)/(n+1)} %Y A330965 Columns k=0..12 are A000108, A000984, A001700, A051924, A051944, A051945, A050476, A050477, A050478, A050479, A050489, A050490, A050491. %K A330965 nonn,tabl,changed %O A330965 0,5 %A A330965 _Andrew Howroyd_, Jan 04 2020