This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330972 #9 Jan 07 2020 09:08:25 %S A330972 1,4,8,12,16,24,36,48,60,72,96,120,128,144,180,192,216,240,256,288, %T A330972 360,384,420,432,480,576,720,768,840,864,900,960,1024,1080,1152,1260, %U A330972 1440,1680,1728,1800,1920,2048,2160,2304,2520,2592,2880,3072,3360,3456,3600 %N A330972 Sorted list containing the least number with each possible nonzero number of factorizations into factors > 1. %C A330972 This is the sorted list of positions of first appearances in A001055 of each element of the range (A045782). %H A330972 R. E. Canfield, P. Erdős and C. Pomerance, <a href="http://math.dartmouth.edu/~carlp/PDF/paper39.pdf">On a Problem of Oppenheim concerning "Factorisatio Numerorum"</a>, J. Number Theory 17 (1983), 1-28. %e A330972 Factorizations of n for n = 4, 8, 12, 16, 24, 36, 48, 60: %e A330972 4 8 12 16 24 36 48 60 %e A330972 2*2 2*4 2*6 2*8 3*8 4*9 6*8 2*30 %e A330972 2*2*2 3*4 4*4 4*6 6*6 2*24 3*20 %e A330972 2*2*3 2*2*4 2*12 2*18 3*16 4*15 %e A330972 2*2*2*2 2*2*6 3*12 4*12 5*12 %e A330972 2*3*4 2*2*9 2*3*8 6*10 %e A330972 2*2*2*3 2*3*6 2*4*6 2*5*6 %e A330972 3*3*4 3*4*4 3*4*5 %e A330972 2*2*3*3 2*2*12 2*2*15 %e A330972 2*2*2*6 2*3*10 %e A330972 2*2*3*4 2*2*3*5 %e A330972 2*2*2*2*3 %t A330972 nn=1000; %t A330972 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A330972 nds=Length/@Array[facs,nn]; %t A330972 Table[Position[nds,i][[1,1]],{i,First/@Gather[nds]}] %Y A330972 All terms belong to A025487 %Y A330972 Includes all highly factorable numbers A033833. %Y A330972 Factorizations are A001055, with image A045782. %Y A330972 The least number with A045782(n) factorizations is A045783(n). %Y A330972 The least number with n factorizations is A330973(n). %Y A330972 The strict version is A330997. %Y A330972 Cf. A001222, A002033, A007716, A045778, A318284, A325238, A330935, A330936, A330976, A330977, A330989, A330991, A330992. %K A330972 nonn %O A330972 1,2 %A A330972 _Gus Wiseman_, Jan 06 2020