A330985 Irregular table read by rows in which row n gives the Littlewood-Richardson coefficients for the square of the symmetric Schur function corresponding to the n-th partition listed in A036036 (colexicographic order).
1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1
Offset: 1
Examples
The 4th partition listed in A036036 is (1,2); the Schur function (s[1,2])^2 is equal to 0*s[6] + 0*s[1,5] + 1*s[2,4] + 1*s[3,3] + 1*s[1,1,4] + 2*s[1,2,3] + 1*s[2,2,2] + 1*s[1,1,1,3] + 1*s[1,1,2,2] + 0*s[1,1,1,1,2] + 0*s[1,1,1,1,1,1], therefore the 4th row is (0, 0, 1, 1, 1, 2, 1, 1, 1, 0, 0). The table starts: n | partition mu | 2|mu| | coefficients of (s_mu)^2 ---+--------------+-------+---------- ---------------- 1 | (1) | 2 | (1, 1) 2 | (2) | 4 | (1, 1, 1, 0, 0) 3 | (1,1) | 4 | (0, 0, 1, 1, 1) 4 | (3) | 6 | (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0) 5 | (1,2) | 6 | (0, 0, 1, 1, 1, 2, 1, 1, 1, 0, 0) 6 | (1,1,1) | 6 | (0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1)
Links
- Peter Luschny, Counting with partitions.
- OEIS Wiki, Orderings of partitions (a comparison).
- Soichi Okada, Applications of minor summation formulas to rectangular-shaped representations of classical groups, Journal of Algebra, vol. 205, no 2, 1998, pp. 337-367. DOI: 10.1006/jabr.1997.7408.
- Wikipedia, Littlewood-Richardson rule, as of Dec 18 2018.
- Wikipedia, Schur polynomial, as of Jan 13 2020.
Crossrefs
Programs
-
PARI
s(p,x=eval([Str("'x"i)|i<-[1..#p]]))={my(J(p)=matdet(matrix(#p,#p, i,j, x[i]^p[j]))); J(Vec(p)+[0..#p-1])/J([0..#p-1])} \\ Schur polynomial corresponding to partition p with p(1) <= ... <= p(n) (otherwise the result differs!). lead(P,m=1)={while(poldegree(P),m*=variable(P)^poldegree(P);P=pollead(P));m} \\ leading monomial of the polynomial P lcoef(P)={while(poldegree(P),P=pollead(P));P} \\ coeff. of leading monomial Schur_index(n,B=Map())={forpart(p=n,mapput(B,lead(s(p)),p));B} \\ Initialize the index {leading monomial => partition} /* The following computes the row corresponding to partition p, but not very efficiently: it requires lots of memory for |mu| >= 4 (<=> |lambda| >= 8). */ c(p, n=vecsum(Vec(p))*2, B=Schur_index(n))={my(S=s(vecsort(Vec(p,-n)))^2, C=Map()); while(S, my(c); mapput(C, p=mapget(B,lead(S)), c=lcoef(S)); S-=c*s(Vec(p,-n)); if(default(debug), printf("%+d s%d ",c,Vec(p)))); [iferr(mapget(C,p),E,0) | p<-partitions(n)]} \\ If debug>0 (\g1), prints the s_lambda when found in s_p^2. A330985=concat([c([1]),c([2]),c([1,1]),c([3]),c([2,1]),c([1,1,1])]) A330985_row(n)=for(k=1,oo,(0
Comments