A330988 a(1)=2, a(2)=3; then a(n+1) = smallest k such that S(k) = S(a(n)) + S(a(n-1)), (n>=2), where S is sopfr (A001414).
2, 3, 5, 15, 13, 38, 93, 106, 89, 695, 233, 1492, 1821, 3932, 1597, 12895, 16708, 13526, 76573, 70828, 28657, 787967, 1125255, 4005507, 6087997, 10487301, 514229, 30784111, 68658699, 150301527, 38770237, 290846217, 525964251, 164233751, 193262488, 1368085495, 1075181473, 8903068701, 10762707995, 4554542743, 433494437
Offset: 1
Keywords
Examples
a(3)=5 since 5 is the smallest number whose sum of prime divisors is soprf(2) + sopfr(3) = 2 + 3 = 5. a(4)=15 since sopfr(3)+sopfr(5)=8, and 15 is the smallest number whose sum of prime divisors is 8.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..51
Programs
-
Mathematica
sopfr[n_] := Plus @@ Times @@@ FactorInteger[n]; a[1] = 2; a[2] = 3; a[n_] := a[n] = Block[{t = sopfr@ a[n-1] + sopfr@ a[n-2], k=3}, While[ sopfr[k] != t, k++]; k]; Array[a, 21] (* Giovanni Resta, Jan 07 2020 *)
Comments