This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330989 #6 Jan 08 2020 09:45:23 %S A330989 1,4,12,0,72,0,480 %N A330989 Least positive integer with exactly 2^n factorizations into factors > 1, or 0 if no such integer exists. %e A330989 The A001055(n) factorizations for n = 1, 4, 12, 72: %e A330989 () (4) (12) (72) %e A330989 (2*2) (2*6) (8*9) %e A330989 (3*4) (2*36) %e A330989 (2*2*3) (3*24) %e A330989 (4*18) %e A330989 (6*12) %e A330989 (2*4*9) %e A330989 (2*6*6) %e A330989 (3*3*8) %e A330989 (3*4*6) %e A330989 (2*2*18) %e A330989 (2*3*12) %e A330989 (2*2*2*9) %e A330989 (2*2*3*6) %e A330989 (2*3*3*4) %e A330989 (2*2*2*3*3) %Y A330989 All nonzero terms belong to A025487 and also A033833. %Y A330989 Factorizations are A001055, with image A045782. %Y A330989 The least number with exactly n factorizations is A330973(n). %Y A330989 Numbers whose number of factorizations is a power of 2 are A330977. %Y A330989 The least number with exactly prime(n) factorizations is A330992(n). %Y A330989 Cf. A002033, A045778, A045783, A318284, A330935, A330972, A330976, A330990, A330991, A331022. %K A330989 nonn,more %O A330989 0,2 %A A330989 _Gus Wiseman_, Jan 07 2020