cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330990 Numbers whose inverse prime shadow (A181821) has its number of factorizations into factors > 1 (A001055) equal to a power of 2 (A000079).

This page as a plain text file.
%I A330990 #4 Jan 08 2020 09:45:29
%S A330990 1,2,3,4,6,15,44
%N A330990 Numbers whose inverse prime shadow (A181821) has its number of factorizations into factors > 1 (A001055) equal to a power of 2 (A000079).
%C A330990 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The inverse prime shadow of n is the least number whose prime exponents are the prime indices of n.
%F A330990 A001055(A181821(a(n))) = 2^k for some k >= 0.
%e A330990 The factorizations of A181821(n) for n = 1, 2, 3, 4, 6, 15:
%e A330990   ()  (2)  (4)    (6)    (12)     (72)
%e A330990            (2*2)  (2*3)  (2*6)    (8*9)
%e A330990                          (3*4)    (2*36)
%e A330990                          (2*2*3)  (3*24)
%e A330990                                   (4*18)
%e A330990                                   (6*12)
%e A330990                                   (2*4*9)
%e A330990                                   (2*6*6)
%e A330990                                   (3*3*8)
%e A330990                                   (3*4*6)
%e A330990                                   (2*2*18)
%e A330990                                   (2*3*12)
%e A330990                                   (2*2*2*9)
%e A330990                                   (2*2*3*6)
%e A330990                                   (2*3*3*4)
%e A330990                                   (2*2*2*3*3)
%t A330990 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
%t A330990 nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
%t A330990 Select[Range[100],IntegerQ[Log[2,Length[facs[Times@@Prime/@nrmptn[#]]]]]&]
%Y A330990 The same for prime numbers (instead of powers of 2) is A330993,
%Y A330990 Factorizations are A001055, with image A045782.
%Y A330990 Numbers whose number of factorizations is a power of 2 are A330977.
%Y A330990 The least number with exactly 2^n factorizations is A330989.
%Y A330990 Cf. A033833, A045778, A045783, A181821, A305936, A318283, A318284, A330972, A330973, A330976, A330998, A331022.
%K A330990 nonn,more
%O A330990 1,2
%A A330990 _Gus Wiseman_, Jan 07 2020