This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330991 #10 Feb 07 2021 06:25:46 %S A330991 4,6,8,9,10,14,15,16,21,22,24,25,26,27,30,32,33,34,35,38,39,40,42,46, %T A330991 49,51,54,55,56,57,58,60,62,64,65,66,69,70,74,77,78,81,82,84,85,86,87, %U A330991 88,90,91,93,94,95,96,102,104,105,106,110,111,114,115,118,119 %N A330991 Positive integers whose number of factorizations into factors > 1 (A001055) is a prime number (A000040). %C A330991 In short, A001055(a(n)) belongs to A000040. %H A330991 Amiram Eldar, <a href="/A330991/b330991.txt">Table of n, a(n) for n = 1..10000</a> %H A330991 R. E. Canfield, P. Erdős and C. Pomerance, <a href="http://math.dartmouth.edu/~carlp/PDF/paper39.pdf">On a Problem of Oppenheim concerning "Factorisatio Numerorum"</a>, J. Number Theory 17 (1983), 1-28. %e A330991 Factorizations of selected terms: %e A330991 (4) (8) (16) (24) (60) (96) %e A330991 (2*2) (2*4) (2*8) (3*8) (2*30) (2*48) %e A330991 (2*2*2) (4*4) (4*6) (3*20) (3*32) %e A330991 (2*2*4) (2*12) (4*15) (4*24) %e A330991 (2*2*2*2) (2*2*6) (5*12) (6*16) %e A330991 (2*3*4) (6*10) (8*12) %e A330991 (2*2*2*3) (2*5*6) (2*6*8) %e A330991 (3*4*5) (3*4*8) %e A330991 (2*2*15) (4*4*6) %e A330991 (2*3*10) (2*2*24) %e A330991 (2*2*3*5) (2*3*16) %e A330991 (2*4*12) %e A330991 (2*2*3*8) %e A330991 (2*2*4*6) %e A330991 (2*3*4*4) %e A330991 (2*2*2*12) %e A330991 (2*2*2*2*6) %e A330991 (2*2*2*3*4) %e A330991 (2*2*2*2*2*3) %t A330991 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A330991 Select[Range[100],PrimeQ[Length[facs[#]]]&] %Y A330991 Factorizations are A001055, with image A045782, with complement A330976. %Y A330991 Numbers whose number of strict integer partitions is prime are A035359. %Y A330991 Numbers whose number of integer partitions is prime are A046063. %Y A330991 Numbers whose number of set partitions is prime are A051130. %Y A330991 Numbers whose number of factorizations is a power of 2 are A330977. %Y A330991 The least number with prime(n) factorizations is A330992(n). %Y A330991 Cf. A001222, A033833, A045783, A181819, A181821, A326622, A330972, A330973, A330993. %K A330991 nonn %O A330991 1,1 %A A330991 _Gus Wiseman_, Jan 07 2020