This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330992 #10 Jul 07 2021 09:26:00 %S A330992 4,8,16,24,60,0,0,96,0,144,216,0,0,0,288,0,0,0,768,0,0,0,0,0,864,8192, %T A330992 0,0,1080,0,0,0,1800,3072,0,0,0,0,0,0,0,2304,0,0,0,0,0,0,0,0,0,0,0,0, %U A330992 3456,0,3600,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24576 %N A330992 Least positive integer with exactly prime(n) factorizations into factors > 1, or 0 if no such integer exists. %H A330992 R. E. Canfield, P. Erdős and C. Pomerance, <a href="http://math.dartmouth.edu/~carlp/PDF/paper39.pdf">On a Problem of Oppenheim concerning "Factorisatio Numerorum"</a>, J. Number Theory 17 (1983), 1-28. %e A330992 Factorizations of the initial positive terms are: %e A330992 4 8 16 24 60 96 %e A330992 2*2 2*4 2*8 3*8 2*30 2*48 %e A330992 2*2*2 4*4 4*6 3*20 3*32 %e A330992 2*2*4 2*12 4*15 4*24 %e A330992 2*2*2*2 2*2*6 5*12 6*16 %e A330992 2*3*4 6*10 8*12 %e A330992 2*2*2*3 2*5*6 2*6*8 %e A330992 3*4*5 3*4*8 %e A330992 2*2*15 4*4*6 %e A330992 2*3*10 2*2*24 %e A330992 2*2*3*5 2*3*16 %e A330992 2*4*12 %e A330992 2*2*3*8 %e A330992 2*2*4*6 %e A330992 2*3*4*4 %e A330992 2*2*2*12 %e A330992 2*2*2*2*6 %e A330992 2*2*2*3*4 %e A330992 2*2*2*2*2*3 %Y A330992 All positive terms belong to A025487 and also A033833. %Y A330992 Factorizations are A001055, with image A045782, with complement A330976. %Y A330992 Numbers whose number of partitions is prime are A046063. %Y A330992 Numbers whose number of strict partitions is prime are A035359. %Y A330992 Numbers whose number of set partitions is prime are A051130. %Y A330992 Numbers with a prime number of factorizations are A330991. %Y A330992 The least number with exactly 2^n factorizations is A330989(n). %Y A330992 Cf. A001222, A045783, A325238, A330972, A330973, A330976, A330993, A330998. %K A330992 nonn %O A330992 1,1 %A A330992 _Gus Wiseman_, Jan 07 2020 %E A330992 More terms from _Jinyuan Wang_, Jul 07 2021