This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330993 #9 Jul 17 2021 11:24:55 %S A330993 3,4,5,7,8,10,11,12,13,21,22,25,33,38,41,45,46,49,50,55,57,58,63 %N A330993 Numbers k such that a multiset whose multiplicities are the prime indices of k has a prime number of multiset partitions. %C A330993 This multiset (row k of A305936) is generally not the same as the multiset of prime indices of k. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}. %C A330993 Also numbers whose inverse prime shadow has a prime number of factorizations. A prime index of k is a number m such that prime(m) divides k. The multiset of prime indices of k is row k of A112798. The inverse prime shadow of k is the least number whose prime exponents are the prime indices of k. %H A330993 R. E. Canfield, P. Erdős and C. Pomerance, <a href="http://math.dartmouth.edu/~carlp/PDF/paper39.pdf">On a Problem of Oppenheim concerning "Factorisatio Numerorum"</a>, J. Number Theory 17 (1983), 1-28. %F A330993 A001055(A181821(a(n))) belongs to A000040. %e A330993 The multiset partitions for n = 1..6: %e A330993 {11} {12} {111} {1111} {123} {1112} %e A330993 {1}{1} {1}{2} {1}{11} {1}{111} {1}{23} {1}{112} %e A330993 {1}{1}{1} {11}{11} {2}{13} {11}{12} %e A330993 {1}{1}{11} {3}{12} {2}{111} %e A330993 {1}{1}{1}{1} {1}{2}{3} {1}{1}{12} %e A330993 {1}{2}{11} %e A330993 {1}{1}{1}{2} %e A330993 The factorizations for n = 1..8: %e A330993 4 6 8 16 30 24 32 60 %e A330993 2*2 2*3 2*4 2*8 5*6 3*8 4*8 2*30 %e A330993 2*2*2 4*4 2*15 4*6 2*16 3*20 %e A330993 2*2*4 3*10 2*12 2*2*8 4*15 %e A330993 2*2*2*2 2*3*5 2*2*6 2*4*4 5*12 %e A330993 2*3*4 2*2*2*4 6*10 %e A330993 2*2*2*3 2*2*2*2*2 2*5*6 %e A330993 3*4*5 %e A330993 2*2*15 %e A330993 2*3*10 %e A330993 2*2*3*5 %t A330993 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A330993 unsh[n_]:=Times@@MapIndexed[Prime[#2[[1]]]^#1&,Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A330993 Select[Range[30],PrimeQ[Length[facs[unsh[#]]]]&] %Y A330993 The same for powers of 2 (instead of primes) is A330990. %Y A330993 Factorizations are A001055, with image A045782, with complement A330976. %Y A330993 Numbers whose number of integer partitions is prime are A046063. %Y A330993 Numbers whose number of strict integer partitions is prime are A035359. %Y A330993 Numbers whose number of set partitions is prime are A051130. %Y A330993 Numbers whose number of factorizations is a power of 2 are A330977. %Y A330993 The least number with prime(n) factorizations is A330992(n). %Y A330993 Factorizations of a number's inverse prime shadow are A318284. %Y A330993 Numbers with a prime number of factorizations are A330991. %Y A330993 Cf. A033833, A045783, A056239, A181819, A181821, A305936, A318286, A325755, A330972, A330973, A330998. %K A330993 nonn,more %O A330993 1,1 %A A330993 _Gus Wiseman_, Jan 07 2020