cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330995 Denominator P(n)/Q(n) = A000041(n)/A000009(n).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 1, 3, 4, 5, 3, 15, 18, 22, 27, 32, 38, 46, 27, 64, 19, 89, 104, 122, 71, 55, 96, 111, 256, 74, 170, 130, 64, 256, 195, 668, 760, 864, 982, 53, 60, 713, 1610, 1816, 1024, 384, 185, 970, 3264, 1829, 4097, 4582, 5120, 5718, 3189, 7108, 2639
Offset: 0

Views

Author

Gus Wiseman, Jan 08 2020

Keywords

Comments

An integer partition of n is a finite, nonincreasing sequence of positive integers (parts) summing to n. It is strict if the parts are all different. Integer partitions and strict integer partitions are counted by A000041 and A000009 respectively.
Conjecture: The only 1's occur at n = 0, 1, 2, 7.

Crossrefs

The numerators are A330994.
The rounded quotients are A330996.
The same for factorizations is A331024.

Programs

  • Mathematica
    Table[PartitionsP[n]/PartitionsQ[n],{n,0,100}]//Denominator

Formula