cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330998 Sorted list containing the least number whose inverse prime shadow (A181821) has each possible nonzero number of factorizations into factors > 1.

This page as a plain text file.
%I A330998 #8 Jan 08 2020 09:45:57
%S A330998 1,3,5,6,7,9,10,12,14,15,16,18,19,20,21,22,23,24,25,27,28,29,30,31,33,
%T A330998 34,35,36,37,38,40,41,42,43,44,45,46,47,49,51,52,53,54,56,57,58,59,60,
%U A330998 61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79
%N A330998 Sorted list containing the least number whose inverse prime shadow (A181821) has each possible nonzero number of factorizations into factors > 1.
%C A330998 This is the sorted list of positions of first appearances in A318284 of each element of the range A045782.
%C A330998 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The inverse prime shadow of n is the least number whose prime exponents are the prime indices of n.
%e A330998 Factorizations of the inverse prime shadows of the initial terms:
%e A330998     4    8      12     16       36       24       60       48
%e A330998     2*2  2*4    2*6    2*8      4*9      3*8      2*30     6*8
%e A330998          2*2*2  3*4    4*4      6*6      4*6      3*20     2*24
%e A330998                 2*2*3  2*2*4    2*18     2*12     4*15     3*16
%e A330998                        2*2*2*2  3*12     2*2*6    5*12     4*12
%e A330998                                 2*2*9    2*3*4    6*10     2*3*8
%e A330998                                 2*3*6    2*2*2*3  2*5*6    2*4*6
%e A330998                                 3*3*4             3*4*5    3*4*4
%e A330998                                 2*2*3*3           2*2*15   2*2*12
%e A330998                                                   2*3*10   2*2*2*6
%e A330998                                                   2*2*3*5  2*2*3*4
%e A330998                                                            2*2*2*2*3
%e A330998 The corresponding multiset partitions:
%e A330998     {11}    {111}      {112}      {1111}        {1122}        {1112}
%e A330998     {1}{1}  {1}{11}    {1}{12}    {1}{111}      {1}{122}      {1}{112}
%e A330998             {1}{1}{1}  {2}{11}    {11}{11}      {11}{22}      {11}{12}
%e A330998                        {1}{1}{2}  {1}{1}{11}    {12}{12}      {2}{111}
%e A330998                                   {1}{1}{1}{1}  {2}{112}      {1}{1}{12}
%e A330998                                                 {1}{1}{22}    {1}{2}{11}
%e A330998                                                 {1}{2}{12}    {1}{1}{1}{2}
%e A330998                                                 {2}{2}{11}
%e A330998                                                 {1}{1}{2}{2}
%t A330998 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
%t A330998 nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
%t A330998 nds=Table[Length[facs[Times@@Prime/@nrmptn[n]]],{n,50}];
%t A330998 Table[Position[nds,i][[1,1]],{i,First/@Gather[nds]}]
%Y A330998 Taking n instead of the inverse prime shadow of n gives A330972.
%Y A330998 Factorizations are A001055, with image A045782, with complement A330976.
%Y A330998 Factorizations of inverse prime shadows are A318284.
%Y A330998 Cf. A025487, A033833, A045778, A045783, A181819, A181821, A318286, A325238, A330973, A330989, A330990, A330993, A330997.
%K A330998 nonn
%O A330998 1,2
%A A330998 _Gus Wiseman_, Jan 07 2020