This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A331023 #11 May 28 2021 00:56:07 %S A331023 1,1,1,2,1,1,1,3,2,1,1,4,1,1,1,5,1,4,1,4,1,1,1,7,2,1,3,4,1,1,1,7,1,1, %T A331023 1,9,1,1,1,7,1,1,1,4,4,1,1,12,2,4,1,4,1,7,1,7,1,1,1,11,1,1,4,11,1,1,1, %U A331023 4,1,1,1,16,1,1,4,4,1,1,1,12,5,1,1,11,1,1,1,7,1,11,1,4,1,1,1,19,1,4,4,9,1,1,1,7,1 %N A331023 Numerator: factorizations divided by strict factorizations A001055(n)/A045778(n). %C A331023 A factorization of n is a finite, nondecreasing sequence of positive integers > 1 with product n. It is strict if the factors are all different. Factorizations and strict factorizations are counted by A001055 and A045778 respectively. %H A331023 Antti Karttunen, <a href="/A331023/b331023.txt">Table of n, a(n) for n = 1..65537</a> %H A331023 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a> %F A331023 a(2^n) = A330994(n). %t A331023 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A331023 Table[Length[facs[n]]/Length[Select[facs[n],UnsameQ@@#&]],{n,100}]//Numerator %o A331023 (PARI) %o A331023 A001055(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A001055(n/d, d))); (s)); %o A331023 A045778(n, m=n) = ((n<=m) + sumdiv(n, d, if((d>1)&&(d<=m)&&(d<n), A045778(n/d, d-1)))); %o A331023 A331023(n) = numerator(A001055(n)/A045778(n)); \\ _Antti Karttunen_, May 27 2021 %Y A331023 Positions of 1's are A005117. %Y A331023 Positions of 2's appear to be A001248. %Y A331023 The denominators are A331024. %Y A331023 The rounded quotients are A331048. %Y A331023 The same for integer partitions is A330994. %Y A331023 Cf. A001055, A001222, A002033, A045778, A045779, A045780, A045782, A045783, A325755, A326028, A326622, A328966, A330972, A330977, A330991. %K A331023 nonn,frac %O A331023 1,4 %A A331023 _Gus Wiseman_, Jan 08 2020 %E A331023 More terms from _Antti Karttunen_, May 27 2021